Skip to Main Content

Representation Theory

Published by the American Mathematical Society, the Representation Theory (ERT) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.7.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Familles de caractères de groupes de réflexions complexes
HTML articles powered by AMS MathViewer

by Gunter Malle and Raphaël Rouquier PDF
Represent. Theory 7 (2003), 610-640 Request permission

Abstract:

Nous étudions certains types de blocs d’algèbres de Hecke associées aux groupes de réflexions complexes qui généralisent les familles de caractères définies par Lusztig pour les groupes de Weyl. Nous déterminons ces blocs pour les groupes de réflexions spetsiaux et nous établissons un théorème de compatibilité entre familles et $d$-séries de Harish-Chandra.
References
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20C08, 20C40
  • Retrieve articles in all journals with MSC (2000): 20C08, 20C40
Additional Information
  • Gunter Malle
  • Affiliation: Fachbereich Mathematik/Informatik, Universität Kassel, Heinrich-Plett-Str. 40, D–34132 Kassel, Germany
  • MR Author ID: 225462
  • Email: malle@mathematik.uni-kassel.de
  • Raphaël Rouquier
  • Affiliation: UMR 7586 du CNRS et UFR de Mathématiques, Université Denis Diderot, Case 7012, 2 Place Jussieu, F–75251 Paris Cedex 05, France
  • MR Author ID: 353858
  • Email: rouquier@math.jussieu.fr
  • Received by editor(s): April 8, 2003
  • Received by editor(s) in revised form: October 2, 2003
  • Published electronically: November 20, 2003
  • © Copyright 2003 American Mathematical Society
  • Journal: Represent. Theory 7 (2003), 610-640
  • MSC (2000): Primary 20C08; Secondary 20C40
  • DOI: https://doi.org/10.1090/S1088-4165-03-00193-6
  • MathSciNet review: 2017069