Twisting functors on $\mathcal {O}$
HTML articles powered by AMS MathViewer
- by Henning Haahr Andersen and Catharina Stroppel
- Represent. Theory 7 (2003), 681-699
- DOI: https://doi.org/10.1090/S1088-4165-03-00189-4
- Published electronically: December 3, 2003
Abstract:
This paper studies twisting functors on the main block of the Bernstein-Gelfand-Gelfand category $\mathcal {O}$ and describes what happens to (dual) Verma modules. We consider properties of the right adjoint functors and show that they induce an auto-equivalence of derived categories. This allows us to give a very precise description of twisted simple objects. We explain how these results give a reformulation of the Kazhdan-Lusztig conjectures in terms of twisting functors.References
- [AL02]AL H. H. Andersen and N. Lauritzen, Twisted Verma modules, Studies in Memory of Issai Schur, Progress in Math., vol. 210, Birkhäuser, Basel, 2002, pp. 1–26.
- Henning Haahr Andersen, An inversion formula for the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math. 60 (1986), no. 2, 125–153. MR 840301, DOI 10.1016/S0001-8708(86)80008-1 [And03]Aquant —, Twisted Verma modules and their quantized analogues, Combinatorial and geometric representation theory, Contemporary Mathematics, vol. 325, AMS, 2003, pp. 1–10. [Ark]ArkAlg S. Arkhipov, Algebraic construction of contragradient quasi-Verma modules in positive characteristic, math. AG/0105042.
- A. BeÄlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825, DOI 10.1090/advsov/016.1/01
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- I. N. BernšteÄn, I. M. Gel′fand, and S. I. Gel′fand, A certain category of ${\mathfrak {g}}$-modules, Funkcional. Anal. i PriloĹľen. 10 (1976), no. 2, 1–8 (Russian). MR 0407097
- J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), no. 3, 387–410. MR 632980, DOI 10.1007/BF01389272
- Edward Cline, Brian Parshall, and Leonard Scott, Abstract Kazhdan-Lusztig theories, Tohoku Math. J. (2) 45 (1993), no. 4, 511–534. MR 1245719, DOI 10.2748/tmj/1178225846
- Jacques Dixmier, Enveloping algebras, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation. MR 1393197, DOI 10.1090/gsm/011
- Boris L. FeÄgin and Edward V. Frenkel, Affine Kac-Moody algebras and semi-infinite flag manifolds, Comm. Math. Phys. 128 (1990), no. 1, 161–189. MR 1042449, DOI 10.1007/BF02097051 [Hum90]HumCoxeter J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, 1990.
- Ronald Irving, Shuffled Verma modules and principal series modules over complex semisimple Lie algebras, J. London Math. Soc. (2) 48 (1993), no. 2, 263–277. MR 1231714, DOI 10.1112/jlms/s2-48.2.263
- Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943, DOI 10.1007/BFb0069521
- Jens Carsten Jantzen, EinhĂĽllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR 721170, DOI 10.1007/978-3-642-68955-0
- J. C. Jantzen, Representations of Chevalley groups in their own characteristic, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 127–146. MR 933356, DOI 10.1090/pspum/047.1/933356
- A. Joseph, Completion functors in the ${\scr O}$ category, Noncommutative harmonic analysis and Lie groups (Marseille, 1982) Lecture Notes in Math., vol. 1020, Springer, Berlin, 1983, pp. 80–106. MR 733462, DOI 10.1007/BFb0071498
- Anthony Joseph, Enveloping algebras: problems old and new, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 385–413. MR 1327542, DOI 10.1007/978-1-4612-0261-5_{1}4
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031 [KM]KM O. Khomenko and V. Mazorchuk, On Arkhipov’s and Enright’s functors, Technical Report 2003:7, University of Uppsala (Sweden).
- Mikhail Khovanov and Paul Seidel, Quivers, Floer cohomology, and braid group actions, J. Amer. Math. Soc. 15 (2002), no. 1, 203–271. MR 1862802, DOI 10.1090/S0894-0347-01-00374-5
- John McCleary, User’s guide to spectral sequences, Mathematics Lecture Series, vol. 12, Publish or Perish, Inc., Wilmington, DE, 1985. MR 820463
- Wolfgang Soergel, Character formulas for tilting modules over Kac-Moody algebras, Represent. Theory 2 (1998), 432–448. MR 1663141, DOI 10.1090/S1088-4165-98-00057-0
- David A. Vogan Jr., Irreducible characters of semisimple Lie groups. II. The Kazhdan-Lusztig conjectures, Duke Math. J. 46 (1979), no. 4, 805–859. MR 552528, DOI 10.1215/S0012-7094-79-04642-8
- Alexander A. Voronov, Semi-infinite induction and Wakimoto modules, Amer. J. Math. 121 (1999), no. 5, 1079–1094. MR 1713301, DOI 10.1353/ajm.1999.0037
Bibliographic Information
- Henning Haahr Andersen
- Affiliation: Department of Mathematics, University of Aarhus, Dk-8000 Aarhus C, Denmark
- Email: mathha@imf.au.dk
- Catharina Stroppel
- Affiliation: Department of Mathematics and Computer Science, Leicester University, GB Leicester LE1 7RH
- Address at time of publication: University of Aarhus, Ny Munkegade 530, Dk-8000 Aarhus C, Denmark
- Email: cs93@le.ac.uk, stroppel@imf.au.dk
- Received by editor(s): February 27, 2003
- Received by editor(s) in revised form: July 10, 2003
- Published electronically: December 3, 2003
- © Copyright 2003 by the authors
- Journal: Represent. Theory 7 (2003), 681-699
- MSC (2000): Primary 17B10, 17B35, 20F29
- DOI: https://doi.org/10.1090/S1088-4165-03-00189-4
- MathSciNet review: 2032059