## Total positivity in the De Concini-Procesi Compactification

HTML articles powered by AMS MathViewer

- by Xuhua He PDF
- Represent. Theory
**8**(2004), 52-71 Request permission

## Abstract:

We study the nonnegative part $\overline {G_{>0}}$ of the De Concini-Procesi compactification of a semisimple algebraic group $G$, as defined by Lusztig. Using positivity properties of the canonical basis and parametrization of flag varieties, we will give an explicit description of $\overline {G_{>0}}$. This answers the question of Lusztig in*Total positivity and canonical bases*, Algebraic groups and Lie groups (ed. G.I. Lehrer), Cambridge Univ. Press, 1997, pp. 281-295. We will also prove that $\overline {G_{>0}}$ has a cell decomposition which was conjectured by Lusztig.

## References

- C. De Concini and C. Procesi,
*Complete symmetric varieties*, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1–44. MR**718125**, DOI 10.1007/BFb0063234 - Sergey Fomin and Andrei Zelevinsky,
*Double Bruhat cells and total positivity*, J. Amer. Math. Soc.**12**(1999), no. 2, 335–380. MR**1652878**, DOI 10.1090/S0894-0347-99-00295-7
[MR]MR Marsh, R., and K. Rietsch, - David Kazhdan and George Lusztig,
*Representations of Coxeter groups and Hecke algebras*, Invent. Math.**53**(1979), no. 2, 165–184. MR**560412**, DOI 10.1007/BF01390031 - G. Lusztig,
*Total positivity in reductive groups*, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR**1327548**, DOI 10.1007/978-1-4612-0261-5_{2}0 - George Lusztig,
*Total positivity and canonical bases*, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., vol. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 281–295. MR**1635687** - G. Lusztig,
*Total positivity in partial flag manifolds*, Represent. Theory**2**(1998), 70–78. MR**1606402**, DOI 10.1090/S1088-4165-98-00046-6 - George Lusztig,
*Introduction to total positivity*, Positivity in Lie theory: open problems, De Gruyter Exp. Math., vol. 26, de Gruyter, Berlin, 1998, pp. 133–145. MR**1648700**, DOI 10.1515/9783110811186.133
[L5]L5 Lusztig, G., - Konstanze Rietsch,
*An algebraic cell decomposition of the nonnegative part of a flag variety*, J. Algebra**213**(1999), no. 1, 144–154. MR**1674668**, DOI 10.1006/jabr.1998.7665

*Parametrizations of flag varieties*, RT/0307017.

*Parabolic character sheaves, I*, RT/0302151. [L6]L6 Lusztig, G.,

*Parabolic character sheaves, II*, RT/0302317. [R1]R1 Rietsch, K.,

*Total positivity and real flag varieties*, MIT thesis (1998).

## Additional Information

**Xuhua He**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: hugo@math.mit.edu
- Received by editor(s): October 3, 2003
- Received by editor(s) in revised form: March 10, 2004
- Published electronically: April 21, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Represent. Theory
**8**(2004), 52-71 - MSC (2000): Primary 20G20; Secondary 14M15
- DOI: https://doi.org/10.1090/S1088-4165-04-00213-4
- MathSciNet review: 2048587