Total positivity in the De Concini-Procesi Compactification
HTML articles powered by AMS MathViewer
- by Xuhua He
- Represent. Theory 8 (2004), 52-71
- DOI: https://doi.org/10.1090/S1088-4165-04-00213-4
- Published electronically: April 21, 2004
- PDF | Request permission
Abstract:
We study the nonnegative part $\overline {G_{>0}}$ of the De Concini-Procesi compactification of a semisimple algebraic group $G$, as defined by Lusztig. Using positivity properties of the canonical basis and parametrization of flag varieties, we will give an explicit description of $\overline {G_{>0}}$. This answers the question of Lusztig in Total positivity and canonical bases, Algebraic groups and Lie groups (ed. G.I. Lehrer), Cambridge Univ. Press, 1997, pp. 281-295. We will also prove that $\overline {G_{>0}}$ has a cell decomposition which was conjectured by Lusztig.References
- C. De Concini and C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1–44. MR 718125, DOI 10.1007/BFb0063234
- Sergey Fomin and Andrei Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), no. 2, 335–380. MR 1652878, DOI 10.1090/S0894-0347-99-00295-7 [MR]MR Marsh, R., and K. Rietsch, Parametrizations of flag varieties, RT/0307017.
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR 1327548, DOI 10.1007/978-1-4612-0261-5_{2}0
- George Lusztig, Total positivity and canonical bases, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., vol. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 281–295. MR 1635687
- G. Lusztig, Total positivity in partial flag manifolds, Represent. Theory 2 (1998), 70–78. MR 1606402, DOI 10.1090/S1088-4165-98-00046-6
- George Lusztig, Introduction to total positivity, Positivity in Lie theory: open problems, De Gruyter Exp. Math., vol. 26, de Gruyter, Berlin, 1998, pp. 133–145. MR 1648700, DOI 10.1515/9783110811186.133 [L5]L5 Lusztig, G., Parabolic character sheaves, I, RT/0302151. [L6]L6 Lusztig, G., Parabolic character sheaves, II, RT/0302317. [R1]R1 Rietsch, K., Total positivity and real flag varieties, MIT thesis (1998).
- Konstanze Rietsch, An algebraic cell decomposition of the nonnegative part of a flag variety, J. Algebra 213 (1999), no. 1, 144–154. MR 1674668, DOI 10.1006/jabr.1998.7665
Bibliographic Information
- Xuhua He
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: hugo@math.mit.edu
- Received by editor(s): October 3, 2003
- Received by editor(s) in revised form: March 10, 2004
- Published electronically: April 21, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Represent. Theory 8 (2004), 52-71
- MSC (2000): Primary 20G20; Secondary 14M15
- DOI: https://doi.org/10.1090/S1088-4165-04-00213-4
- MathSciNet review: 2048587