## The unitary $\mathbb I$–spherical dual for split $p$–adic groups of type $F_4$

HTML articles powered by AMS MathViewer

- by Dan Ciubotaru
- Represent. Theory
**9**(2005), 94-137 - DOI: https://doi.org/10.1090/S1088-4165-05-00206-2
- Published electronically: February 1, 2005
- PDF | Request permission

## Abstract:

It is known that the determination of the Iwahori-spherical unitary dual for $p$-adic groups can be reduced to the classification of unitary representations with real infinitesimal character for the associated Hecke algebras. In this setting, I determine the Iwahori–spherical unitary dual for split groups of type $F_4$.## References

- [A]A D. Alvis
- Dan Barbasch,
*The spherical dual for $p$-adic groups*, Geometry and representation theory of real and $p$-adic groups (Córdoba, 1995) Progr. Math., vol. 158, Birkhäuser Boston, Boston, MA, 1998, pp. 1–19. MR**1486132**, DOI 10.1007/s10107-015-0911-4
[B2]B2 — - Dan Barbasch,
*Unipotent representations for real reductive groups*, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 769–777. MR**1159263** - Dan Barbasch and Allen Moy,
*A unitarity criterion for $p$-adic groups*, Invent. Math.**98**(1989), no. 1, 19–37. MR**1010153**, DOI 10.1007/BF01388842 - Dan Barbasch and Allen Moy,
*Reduction to real infinitesimal character in affine Hecke algebras*, J. Amer. Math. Soc.**6**(1993), no. 3, 611–635. MR**1186959**, DOI 10.1090/S0894-0347-1993-1186959-0 - Dan Barbasch and Allen Moy,
*Unitary spherical spectrum for $p$-adic classical groups*, Acta Appl. Math.**44**(1996), no. 1-2, 3–37. Representations of Lie groups, Lie algebras and their quantum analogues. MR**1407038**, DOI 10.1007/BF00116514 - Armand Borel and Nolan R. Wallach,
*Continuous cohomology, discrete subgroups, and representations of reductive groups*, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR**554917** - Roger W. Carter,
*Finite groups of Lie type*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR**794307** - Takeshi Kondo,
*The characters of the Weyl group of type $F_{4}$*, J. Fac. Sci. Univ. Tokyo Sect. I**11**(1965), 145–153 (1965). MR**185018** - A. W. Knapp and Gregg Zuckerman,
*Classification theorems for representations of semisimple Lie groups*, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Lecture Notes in Math., Vol. 587, Springer, Berlin, 1977, pp. 138–159. MR**0476923**, DOI 10.1007/BFb0087919 - Anthony W. Knapp,
*Representation theory of semisimple groups*, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR**855239**, DOI 10.1515/9781400883974 - David Kazhdan and George Lusztig,
*Proof of the Deligne-Langlands conjecture for Hecke algebras*, Invent. Math.**87**(1987), no. 1, 153–215. MR**862716**, DOI 10.1007/BF01389157 - George Lusztig,
*Affine Hecke algebras and their graded version*, J. Amer. Math. Soc.**2**(1989), no. 3, 599–635. MR**991016**, DOI 10.1090/S0894-0347-1989-0991016-9 - G. Lusztig,
*Intersection cohomology complexes on a reductive group*, Invent. Math.**75**(1984), no. 2, 205–272. MR**732546**, DOI 10.1007/BF01388564 - George Lusztig,
*Cuspidal local systems and graded Hecke algebras. I*, Inst. Hautes Études Sci. Publ. Math.**67**(1988), 145–202. MR**972345**, DOI 10.1007/BF02699129 - George Lusztig,
*Cuspidal local systems and graded Hecke algebras. II*, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 217–275. With errata for Part I [Inst. Hautes Études Sci. Publ. Math. No. 67 (1988), 145–202; MR0972345 (90e:22029)]. MR**1357201**, DOI 10.1090/S1088-4165-02-00172-3 - George Lusztig,
*Characters of reductive groups over a finite field*, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR**742472**, DOI 10.1515/9781400881772 - Goran Muić,
*The unitary dual of $p$-adic $G_2$*, Duke Math. J.**90**(1997), no. 3, 465–493. MR**1480543**, DOI 10.1215/S0012-7094-97-09012-8 - Marko Tadić,
*Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)*, Ann. Sci. École Norm. Sup. (4)**19**(1986), no. 3, 335–382. MR**870688**, DOI 10.24033/asens.1510 - David A. Vogan Jr.,
*The unitary dual of $G_2$*, Invent. Math.**116**(1994), no. 1-3, 677–791. MR**1253210**, DOI 10.1007/BF01231578
[V2]V2 —

*Induce/Restrict matrices for exceptional Weyl groups*, preprint.

*Unitary spherical spectrum for split classical groups*(to appear).

*Computing the unitary dual*, notes at atlas.math.umd.edu/papers

## Bibliographic Information

**Dan Ciubotaru**- Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853
- Address at time of publication: Massachusetts Institute of Technology, Department of Mathematics, Room 2-180, Cambridge, Massachusetts 02139
- MR Author ID: 754534
- Email: ciubo@math.mit.edu
- Received by editor(s): August 21, 2003
- Received by editor(s) in revised form: September 21, 2004
- Published electronically: February 1, 2005
- © Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory
**9**(2005), 94-137 - MSC (2000): Primary 22E50
- DOI: https://doi.org/10.1090/S1088-4165-05-00206-2
- MathSciNet review: 2123126