Character sheaves on disconnected groups, VII
HTML articles powered by AMS MathViewer
- by G. Lusztig
- Represent. Theory 9 (2005), 209-266
- DOI: https://doi.org/10.1090/S1088-4165-05-00278-5
- Published electronically: March 25, 2005
- PDF | Request permission
Abstract:
We define and study convolution of parabolic character sheaves. As an application, we attach to any parabolic character sheaf the orbit of a tame local system on the maximal torus under a subgroup of the Weyl group.References
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Victor Ginsburg, Admissible modules on a symmetric space, Astérisque 173-174 (1989), 9–10, 199–255. Orbites unipotentes et représentations, III. MR 1021512
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- George Lusztig, Character sheaves. I, Adv. in Math. 56 (1985), no. 3, 193–237. MR 792706, DOI 10.1016/0001-8708(85)90034-9
- G. Lusztig, Character sheaves on disconnected groups. I, Represent. Theory 7 (2003), 374–403. MR 2017063, DOI 10.1090/S1088-4165-03-00204-8
- George Lusztig, Quantum groups at $v=\infty$, Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ, 1993) Progr. Math., vol. 131, Birkhäuser Boston, Boston, MA, 1995, pp. 199–221. MR 1373004, DOI 10.1007/978-1-4612-4262-8_{7}
- G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442, DOI 10.1090/crmm/018
- J. G. M. Mars and T. A. Springer, Character sheaves, Astérisque 173-174 (1989), 9, 111–198. Orbites unipotentes et représentations, III. MR 1021511
- Takeo Yokonuma, Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A344–A347 (French). MR 218467
Bibliographic Information
- G. Lusztig
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Received by editor(s): November 4, 2004
- Published electronically: March 25, 2005
- Additional Notes: Supported in part by the National Science Foundation
- © Copyright 2005 American Mathematical Society
- Journal: Represent. Theory 9 (2005), 209-266
- MSC (2000): Primary 20G99
- DOI: https://doi.org/10.1090/S1088-4165-05-00278-5
- MathSciNet review: 2133758