On the centralizer of a regular, semi-simple, stable conjugacy class
HTML articles powered by AMS MathViewer
- by Benedict H. Gross
- Represent. Theory 9 (2005), 287-296
- DOI: https://doi.org/10.1090/S1088-4165-05-00283-9
- Published electronically: April 8, 2005
- PDF | Request permission
Abstract:
We describe the isomorphism class of the torus centralizing a regular, semi-simple, stable conjugacy class in a simply-connected, semi-simple group.References
- Benedict H. Gross and Curtis T. McMullen, Automorphisms of even unimodular lattices and unramified Salem numbers, J. Algebra 257 (2002), no. 2, 265–290. MR 1947324, DOI 10.1016/S0021-8693(02)00552-5
- Benedict H. Gross and David Pollack, On the Euler characteristic of the discrete spectrum, J. Number Theory 110 (2005), no. 1, 136–163. MR 2114678, DOI 10.1016/j.jnt.2004.03.008
- Robert E. Kottwitz, Rational conjugacy classes in reductive groups, Duke Math. J. 49 (1982), no. 4, 785–806. MR 683003, DOI 10.1215/S0012-7094-82-04939-0
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577, DOI 10.1007/BFb0108758
- Jean-Pierre Serre, L’invariant de Witt de la forme $\textrm {Tr}(x^2)$, Comment. Math. Helv. 59 (1984), no. 4, 651–676 (French). MR 780081, DOI 10.1007/BF02566371
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192, DOI 10.1007/BFb0081546
- Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 180554, DOI 10.1007/BF02684397
Bibliographic Information
- Benedict H. Gross
- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- MR Author ID: 77400
- Email: gross@math.harvard.edu
- Received by editor(s): August 31, 2004
- Published electronically: April 8, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 9 (2005), 287-296
- MSC (2000): Primary 20G15
- DOI: https://doi.org/10.1090/S1088-4165-05-00283-9
- MathSciNet review: 2133761