Duality for admissible locally analytic representations
HTML articles powered by AMS MathViewer
- by Peter Schneider and Jeremy Teitelbaum
- Represent. Theory 9 (2005), 297-326
- DOI: https://doi.org/10.1090/S1088-4165-05-00277-3
- Published electronically: April 12, 2005
- PDF | Request permission
Abstract:
We study the problem of constructing a contragredient functor on the category of admissible locally analytic representations of $p$-adic analytic group $G$. A naive contragredient does not exist. As a best approximation, we construct an involutive “duality” functor from the bounded derived category of modules over the distribution algebra of $G$ with coadmissible cohomology to itself. on the subcategory corresponding to complexes of smooth representations, this functor induces the usual smooth contragredient (with a degree shift). Although we construct our functor in general we obtain its involutivity, for technical reasons, only in the case of locally $\mathbb {Q}_p$-analytic groups.References
- A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers, Algebraic $D$-modules, Perspectives in Mathematics, vol. 2, Academic Press, Inc., Boston, MA, 1987. MR 882000
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917 [B-GAL]B-GAL Bourbaki, N., Groupes et algèbres de Lie, Chap. 1-3, Paris, Hermann, 1971, 1972.
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480, DOI 10.1515/9781400883844 [Cas]Cas Casselman W., Introduction to the theory of admissible representations of $\wp$-adic reductive groups, Preprint.
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$-groups, London Mathematical Society Lecture Note Series, vol. 157, Cambridge University Press, Cambridge, 1991. MR 1152800, DOI 10.1017/CBO9780511470882 [Eme]Eme Emerton M., Locally analytic vectors in representations of non-archimedean locally $p$-adic analytic groups, to appear in Memoirs of the AMS.
- Christian Tobias Féaux de Lacroix, Einige Resultate über die topologischen Darstellungen $p$-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem $p$-adischen Körper, Schriftenreihe des Mathematischen Instituts der Universität Münster. 3. Serie, Heft 23, Schriftenreihe Math. Inst. Univ. Münster 3. Ser., vol. 23, Univ. Münster, Math. Inst., Münster, 1999, pp. x+111 (German). MR 1691735
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539, DOI 10.1090/memo/0016
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093, DOI 10.1007/BFb0080482
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- George R. Kempf, The Ext-dual of a Verma module is a Verma module, J. Pure Appl. Algebra 75 (1991), no. 1, 47–49. MR 1137161, DOI 10.1016/0022-4049(91)90087-I
- Carmela Vitanza, On the Cauchy-Neumann problem for singular hyperbolic equations with discontinuous coefficients in two variables, Rend. Sem. Mat. Univ. Padova 65 (1981), 191–204 (1982) (Italian, with English summary). MR 653294, DOI 10.1007/978-1-4612-0525-8
- Michel Lazard, Groupes analytiques $p$-adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389–603 (French). MR 209286 [Sch]Sch Schneider P., $p$-adische Analysis, Course at Münster in 2000. http://wwwmath.uni-muenster.de/math/u/schneider/publ/lectnotes.
- Peter Schneider, Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. MR 1869547, DOI 10.1007/978-3-662-04728-6
- Peter Schneider and Jeremy Teitelbaum, Locally analytic distributions and $p$-adic representation theory, with applications to $\textrm {GL}_2$, J. Amer. Math. Soc. 15 (2002), no. 2, 443–468. MR 1887640, DOI 10.1090/S0894-0347-01-00377-0
- Peter Schneider and Jeremy Teitelbaum, Algebras of $p$-adic distributions and admissible representations, Invent. Math. 153 (2003), no. 1, 145–196. MR 1990669, DOI 10.1007/s00222-002-0284-1
Bibliographic Information
- Peter Schneider
- Affiliation: Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, D-48149 Münster, Germany
- MR Author ID: 156590
- Email: pschnei@math.uni-muenster.de
- Jeremy Teitelbaum
- Affiliation: Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, 851 S. Morgan St., Chicago, Illinois 60607
- Email: jeremy@uic.edu
- Received by editor(s): July 27, 2004
- Received by editor(s) in revised form: February 27, 2005
- Published electronically: April 12, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 9 (2005), 297-326
- MSC (2000): Primary 11S80, 22E50
- DOI: https://doi.org/10.1090/S1088-4165-05-00277-3
- MathSciNet review: 2133762