Riemann-Roch-Hirzebruch integral formula for characters of reductive Lie groups
HTML articles powered by AMS MathViewer
- by Matvei Libine
- Represent. Theory 9 (2005), 507-524
- DOI: https://doi.org/10.1090/S1088-4165-05-00229-3
- Published electronically: August 29, 2005
- PDF | Request permission
Abstract:
Let $G_{\mathbb R}$ be a real reductive Lie group acting on a manifold $M$. M. Kashiwara and W. Schmid constructed representations of $G_{\mathbb R}$ using sheaves and quasi-$G_{\mathbb R}$-equivariant ${\mathcal D}$-modules on $M$. In this article we prove an integral character formula for these representations (Theorem 1). Our main tools will be the integral localization formula recently proved by the author and the integral character formula proved by W. Schmid and K. Vilonen (originally established by W. Rossmann) in the important special case when the manifold $M$ is the flag variety of $\mathbb C \otimes _{\mathbb R} \mathfrak {g}_{\mathbb R}$—the complexified Lie algebra of $G_{\mathbb R}$. In the special case when $G_{\mathbb R}$ is commutative and the ${\mathcal D}$-module is the sheaf of sections of a $G_{\mathbb R}$-equivariant line bundle over $M$ this integral character formula will reduce to the classical Riemann-Roch-Hirzebruch formula. As an illustration we give a concrete example on the enhanced flag variety.References
- Alexandre Beĭlinson and Joseph Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720, DOI 10.1007/978-3-642-58088-8
- Nicole Berline and Michèle Vergne, Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 9, 539–541 (French, with English summary). MR 685019
- A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480–497. MR 366940, DOI 10.2307/1970915
- A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers, Algebraic $D$-modules, Perspectives in Mathematics, vol. 2, Academic Press, Inc., Boston, MA, 1987. MR 882000
- V. Ginsburg, ${\mathfrak {G}}$-modules, Springer’s representations and bivariant Chern classes, Adv. in Math. 61 (1986), no. 1, 1–48. MR 847727, DOI 10.1016/0001-8708(86)90064-2
- Mark Goresky and Robert MacPherson, Local contribution to the Lefschetz fixed point formula, Invent. Math. 111 (1993), no. 1, 1–33. MR 1193595, DOI 10.1007/BF01231277
- Hiroshi Matsuyama, A special type of finite groups with an automorphism of prime order, Hokkaido Math. J. 12 (1983), no. 1, 17–23. MR 689252, DOI 10.14492/hokmj/1381757786
- Masaki Kashiwara, Character, character cycle, fixed point theorem and group representations, Representations of Lie groups, Kyoto, Hiroshima, 1986, Adv. Stud. Pure Math., vol. 14, Academic Press, Boston, MA, 1988, pp. 369–378. MR 1039844, DOI 10.2969/aspm/01410369
- Masaki Kashiwara and Teresa Monteiro Fernandes, Involutivité des variétés microcaractéristiques, Bull. Soc. Math. France 114 (1986), no. 4, 393–402 (French, with English summary). MR 882587, DOI 10.24033/bsmf.2062
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006, DOI 10.1007/978-3-662-02661-8
- Masaki Kashiwara and Wilfried Schmid, Quasi-equivariant ${\scr D}$-modules, equivariant derived category, and representations of reductive Lie groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 457–488. MR 1327544, DOI 10.1007/978-1-4612-0261-5_{1}6
- Matvei Libine, A localization argument for characters of reductive Lie groups, J. Funct. Anal. 203 (2003), no. 1, 197–236. MR 1996871, DOI 10.1016/S0022-1236(03)00129-0
- Matvei Libine, A localization argument for characters of reductive Lie groups: an introduction and examples, Noncommutative harmonic analysis, Progr. Math., vol. 220, Birkhäuser Boston, Boston, MA, 2004, pp. 375–393. MR 2036577, DOI 10.1007/978-0-8176-8204-0_{1}3 [L3]L3 M. Libine, Integrals of equivariant forms and a Gauss-Bonnet theorem for constructible sheaves, math.DG/0306152, 2003.
- Varghese Mathai and Daniel Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), no. 1, 85–110. MR 836726, DOI 10.1016/0040-9383(86)90007-8
- W. Rossmann, Invariant eigendistributions on a semisimple Lie algebra and homology classes on the conormal variety. I. An integral formula, J. Funct. Anal. 96 (1991), no. 1, 130–154. MR 1093510, DOI 10.1016/0022-1236(91)90076-H
- Wilfried Schmid, Character formulas and localization of integrals, Deformation theory and symplectic geometry (Ascona, 1996) Math. Phys. Stud., vol. 20, Kluwer Acad. Publ., Dordrecht, 1997, pp. 259–270. MR 1480727
- Wilfried Schmid and Kari Vilonen, Characteristic cycles of constructible sheaves, Invent. Math. 124 (1996), no. 1-3, 451–502. MR 1369425, DOI 10.1007/s002220050060
- Wilfried Schmid and Kari Vilonen, Two geometric character formulas for reductive Lie groups, J. Amer. Math. Soc. 11 (1998), no. 4, 799–867. MR 1612634, DOI 10.1090/S0894-0347-98-00275-6
- Jörg Schürmann, Topology of singular spaces and constructible sheaves, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 63, Birkhäuser Verlag, Basel, 2003. MR 2031639, DOI 10.1007/978-3-0348-8061-9
- Hideyasu Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28. MR 337963, DOI 10.1215/kjm/1250523277
Bibliographic Information
- Matvei Libine
- Affiliation: Department of Mathematics and Statistics, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, Massachusetts 01003
- Address at time of publication: Department of Mathematics, Yale University, P.O. Box 208283, New Haven, Connecticut 06520-8283
- Email: matvei@math.umass.edu
- Received by editor(s): January 25, 2004
- Received by editor(s) in revised form: February 23, 2005
- Published electronically: August 29, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 9 (2005), 507-524
- MSC (2000): Primary 22E45; Secondary 32C38, 19L10, 55N91
- DOI: https://doi.org/10.1090/S1088-4165-05-00229-3
- MathSciNet review: 2167904