Equivariant derived category of a complete symmetric variety
HTML articles powered by AMS MathViewer
- by Stéphane Guillermou PDF
- Represent. Theory 9 (2005), 526-577 Request permission
Abstract:
Let $G$ be a complex algebraic semi-simple adjoint group and $X$ a smooth complete symmetric $G$-variety. Let $L= \bigoplus _\alpha L_\alpha$ be the direct sum of all irreducible $G$-equivariant intersection cohomology complexes on $X$, and let $\mathcal E= \operatorname {Ext}^\cdot _{\mathrm {D}_G(X)}(L,L)$ be the extension algebra of $L$, computed in the $G$-equivariant derived category of $X$. We considered $\mathcal E$ as a dg-algebra with differential $d_\mathcal E =0$, and the $\mathcal E_\alpha = \operatorname {Ext}^\cdot _{\mathrm {D}_G(X)}(L,L_\alpha )$ as $\mathcal E$-dg-modules. We show that the bounded equivariant derived category of sheaves of $\mathbf {C}$-vector spaces on $X$ is equivalent to $\mathrm {D}_\mathcal E\langle \mathcal E_\alpha \rangle$, the subcategory of the derived category of $\mathcal E$-dg-modules generated by the $\mathcal E_\alpha$.References
- Gottfried Barthel, Jean-Paul Brasselet, Karl-Heinz Fieseler, and Ludger Kaup, Combinatorial intersection cohomology for fans, Tohoku Math. J. (2) 54 (2002), no. 1, 1–41. MR 1878925, DOI 10.2748/tmj/1113247177
- Emili Bifet, Corrado De Concini, and Claudio Procesi, Cohomology of regular embeddings, Adv. Math. 82 (1990), no. 1, 1–34. MR 1057441, DOI 10.1016/0001-8708(90)90082-X
- Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527, DOI 10.1007/BFb0073549
- Paul Bressler and Valery A. Lunts, Intersection cohomology on nonrational polytopes, Compositio Math. 135 (2003), no. 3, 245–278. MR 1956814, DOI 10.1023/A:1022232232018
- Henri Cartan, Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson & Cie, Paris, 1951, pp. 15–27 (French). MR 0042426
- C. De Concini and C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1–44. MR 718125, DOI 10.1007/BFb0063234
- C. De Concini and C. Procesi, Complete symmetric varieties. II. Intersection theory, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 481–513. MR 803344, DOI 10.2969/aspm/00610481
- Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, 1996. Translated from the 1988 Russian original. MR 1438306, DOI 10.1007/978-3-662-03220-6
- Victor W. Guillemin and Shlomo Sternberg, Supersymmetry and equivariant de Rham theory, Mathematics Past and Present, Springer-Verlag, Berlin, 1999. With an appendix containing two reprints by Henri Cartan [ MR0042426 (13,107e); MR0042427 (13,107f)]. MR 1689252, DOI 10.1007/978-3-662-03992-2
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994. With a chapter in French by Christian Houzel; Corrected reprint of the 1990 original. MR 1299726, DOI 10.1007/978-3-662-02998-5_{5}
- Bernhard Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102. MR 1258406, DOI 10.24033/asens.1689
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470
- Valery Lunts, Equivariant sheaves on toric varieties, Compositio Math. 96 (1995), no. 1, 63–83. MR 1323725
- Wolfgang Soergel, Combinatorics of Harish-Chandra modules, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 401–412. MR 1653039, DOI 10.1007/978-94-015-9131-7_{1}0
- Wolfgang Soergel, Langlands’ philosophy and Koszul duality, Algebra—representation theory (Constanta, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 28, Kluwer Acad. Publ., Dordrecht, 2001, pp. 379–414. MR 1858045, DOI 10.1007/978-94-010-0814-3_{1}7
- N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), no. 2, 121–154. MR 932640
- Thierry Vust, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. Math. France 102 (1974), 317–333 (French). MR 366941, DOI 10.24033/bsmf.1782
Additional Information
- Stéphane Guillermou
- Affiliation: Université de Grenoble I, Département de Mathématiques, Institut Fourier, UMR 5582 du CNRS, 38402 Saint-Martin d’Hères Cedex, France
- Email: Stephane.Guillermou@ujf-grenoble.fr
- Received by editor(s): March 28, 2005
- Published electronically: October 19, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 9 (2005), 526-577
- MSC (2000): Primary 16E45; Secondary 55N91
- DOI: https://doi.org/10.1090/S1088-4165-05-00282-7
- MathSciNet review: 2176937