Skip to Main Content

Representation Theory

Published by the American Mathematical Society since 1997, this electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.71.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Equivariant derived category of a complete symmetric variety
HTML articles powered by AMS MathViewer

by Stéphane Guillermou
Represent. Theory 9 (2005), 526-577
Published electronically: October 19, 2005


Let $G$ be a complex algebraic semi-simple adjoint group and $X$ a smooth complete symmetric $G$-variety. Let $L= \bigoplus _\alpha L_\alpha$ be the direct sum of all irreducible $G$-equivariant intersection cohomology complexes on $X$, and let $\mathcal E= \operatorname {Ext}^\cdot _{\mathrm {D}_G(X)}(L,L)$ be the extension algebra of $L$, computed in the $G$-equivariant derived category of $X$. We considered $\mathcal E$ as a dg-algebra with differential $d_\mathcal E =0$, and the $\mathcal E_\alpha = \operatorname {Ext}^\cdot _{\mathrm {D}_G(X)}(L,L_\alpha )$ as $\mathcal E$-dg-modules. We show that the bounded equivariant derived category of sheaves of $\mathbf {C}$-vector spaces on $X$ is equivalent to $\mathrm {D}_\mathcal E\langle \mathcal E_\alpha \rangle$, the subcategory of the derived category of $\mathcal E$-dg-modules generated by the $\mathcal E_\alpha$.
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 16E45, 55N91
  • Retrieve articles in all journals with MSC (2000): 16E45, 55N91
Bibliographic Information
  • Stéphane Guillermou
  • Affiliation: Université de Grenoble I, Département de Mathématiques, Institut Fourier, UMR 5582 du CNRS, 38402 Saint-Martin d’Hères Cedex, France
  • Email:
  • Received by editor(s): March 28, 2005
  • Published electronically: October 19, 2005
  • © Copyright 2005 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Represent. Theory 9 (2005), 526-577
  • MSC (2000): Primary 16E45; Secondary 55N91
  • DOI:
  • MathSciNet review: 2176937