Purity of equivalued affine Springer fibers
HTML articles powered by AMS MathViewer
- by Mark Goresky, Robert Kottwitz and Robert MacPherson
- Represent. Theory 10 (2006), 130-146
- DOI: https://doi.org/10.1090/S1088-4165-06-00200-7
- Published electronically: February 20, 2006
- PDF | Request permission
Abstract:
The affine Springer fiber corresponding to a regular integral equivalued semisimple element admits a paving by vector bundles over Hessenberg varieties and hence its homology is “pure".References
- Jeffrey D. Adler, Refined anisotropic $K$-types and supercuspidal representations, Pacific J. Math. 185 (1998), no. 1, 1–32. MR 1653184, DOI 10.2140/pjm.1998.185.1
- Yuri Berest, Pavel Etingof, and Victor Ginzburg, Finite-dimensional representations of rational Cherednik algebras, Int. Math. Res. Not. 19 (2003), 1053–1088. MR 1961261, DOI 10.1155/S1073792803210205
- Roman Bezrukavnikov, The dimension of the fixed point set on affine flag manifolds, Math. Res. Lett. 3 (1996), no. 2, 185–189. MR 1386839, DOI 10.4310/MRL.1996.v3.n2.a5
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- C. De Concini, G. Lusztig, and C. Procesi, Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), no. 1, 15–34. MR 924700, DOI 10.1090/S0894-0347-1988-0924700-2
- C. Kenneth Fan, Euler characteristic of certain affine flag varieties, Transform. Groups 1 (1996), no. 1-2, 35–39. MR 1390748, DOI 10.1007/BF02587734
- Mark Goresky, Robert Kottwitz, and Robert MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83. MR 1489894, DOI 10.1007/s002220050197
- Mark Goresky, Robert Kottwitz, and Robert Macpherson, Homology of affine Springer fibers in the unramified case, Duke Math. J. 121 (2004), no. 3, 509–561. MR 2040285, DOI 10.1215/S0012-7094-04-12135-9
- D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), no. 2, 129–168. MR 947819, DOI 10.1007/BF02787119
- Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032. MR 114875, DOI 10.2307/2372999
- R. P. Langlands, Les débuts d’une formule des traces stable, Publications Mathématiques de l’Université Paris VII [Mathematical Publications of the University of Paris VII], vol. 13, Université de Paris VII, U.E.R. de Mathématiques, Paris, 1983 (French). MR 697567 [Lau]laumon.pre1 G. Laumon, Sur le lemme fondamental pour les groupes unitaires, math.AG/0212245. [LW]lw G. Laumon and J.-L. Waldspurger, Sur le lemme fondamental pour les groupes unitaires: le cas totalement ramifié et homogène, math.AG/9901114. [Luc03]Vince V. Lucarelli, Affine pavings for affine Springer fibers for split elements in PGL(3), arXiv:math.RT/0309132
- G. Lusztig and J. M. Smelt, Fixed point varieties on the space of lattices, Bull. London Math. Soc. 23 (1991), no. 3, 213–218. MR 1123328, DOI 10.1112/blms/23.3.213
- Allen Moy and Gopal Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198, DOI 10.1007/BF01231566
- F. De Mari, C. Procesi, and M. A. Shayman, Hessenberg varieties, Trans. Amer. Math. Soc. 332 (1992), no. 2, 529–534. MR 1043857, DOI 10.1090/S0002-9947-1992-1043857-6
- Daniel S. Sage, The geometry of fixed point varieties on affine flag manifolds, Trans. Amer. Math. Soc. 352 (2000), no. 5, 2087–2119. MR 1491876, DOI 10.1090/S0002-9947-99-02295-3
- Jean-Pierre Serre, Corps locaux, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968 (French). Deuxième édition. MR 0354618
- E. Sommers, A family of affine Weyl group representations, Transform. Groups 2 (1997), no. 4, 375–390. MR 1486037, DOI 10.1007/BF01234541
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- Eric Vasserot, Induced and simple modules of double affine Hecke algebras, Duke Math. J. 126 (2005), no. 2, 251–323. MR 2115259, DOI 10.1215/S0012-7094-04-12623-5
- Jiu-Kang Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), no. 3, 579–622. MR 1824988, DOI 10.1090/S0894-0347-01-00363-0
Bibliographic Information
- Mark Goresky
- Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
- MR Author ID: 75495
- Robert Kottwitz
- Affiliation: Department of Mathematics, University of Chicago, 5734 University Ave., Chicago, Illinois 60637
- Robert MacPherson
- Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
- Received by editor(s): July 3, 2003
- Received by editor(s) in revised form: October 19, 2005
- Published electronically: February 20, 2006
- Additional Notes: The research of M. G. was supported in part by N. S. F. grant DMS-0139986 and DARPA grant HR0011-04-1-0031
The research of R. K. was supported in part by N. S. F. grants DMS-0071971 and DMS-0245639. - © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 10 (2006), 130-146
- MSC (2000): Primary 22E67; Secondary 22E35
- DOI: https://doi.org/10.1090/S1088-4165-06-00200-7
- MathSciNet review: 2209851