Cherednik algebras and Hilbert schemes in characteristic $p$
HTML articles powered by AMS MathViewer
- by Roman Bezrukavnikov, Michael Finkelberg and Victor Ginzburg; with an Appendix by Pavel Etingof
- Represent. Theory 10 (2006), 254-298
- DOI: https://doi.org/10.1090/S1088-4165-06-00309-8
- Published electronically: April 17, 2006
- PDF | Request permission
Abstract:
We prove a localization theorem for the type $\mathbf {A}_{n-1}$ rational Cherednik algebra $\mathsf {H}_c=\mathsf {H}_{1,c}(\mathbf {A}_{n-1})$ over $\overline {\mathbb {F}}_p$, an algebraic closure of the finite field. In the most interesting special case where $c\in \mathbb {F}_p$, we construct an Azumaya algebra $\scr H_c$ on $\operatorname {Hilb}^n{\mathbb {A}}^2$, the Hilbert scheme of $n$ points in the plane, such that $\Gamma (\operatorname {Hilb}^n{\mathbb {A}}^2, \scr H_c)=\mathsf {H}_c$. Our localization theorem provides an equivalence between the bounded derived categories of $\mathsf {H}_c$-modules and sheaves of coherent $\scr H_c$-modules on $\operatorname {Hilb}^n{\mathbb {A}}^2$, respectively. Furthermore, we show that the Azumaya algebra splits on the formal neighborhood of each fiber of the Hilbert-Chow morphism. This provides a link between our results and those of Bridgeland, King and Reid, and Haiman.References
- J. Alev, M. A. Farinati, T. Lambre, and A. L. Solotar, Homologie des invariants d’une algèbre de Weyl sous l’action d’un groupe fini, J. Algebra 232 (2000), no. 2, 564–577 (French, with English and French summaries). MR 1792746, DOI 10.1006/jabr.2000.8406
- A. BeÄlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0
- Yuri Berest, Pavel Etingof, and Victor Ginzburg, Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118 (2003), no. 2, 279–337. MR 1980996, DOI 10.1215/S0012-7094-03-11824-4
- Yuri Berest, Pavel Etingof, and Victor Ginzburg, Finite-dimensional representations of rational Cherednik algebras, Int. Math. Res. Not. 19 (2003), 1053–1088. MR 1961261, DOI 10.1155/S1073792803210205
- R. V. Bezrukavnikov and D. B. Kaledin, McKay equivalence for symplectic resolutions of quotient singularities, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 20–42 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(246) (2004), 13–33. MR 2101282 [BMR]BMR R. Bezrukavnikov, I. Mirković, D. Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. Math. (2006). [ arXiv:math.RT/0205144].
- Tom Bridgeland, Alastair King, and Miles Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535–554. MR 1824990, DOI 10.1090/S0894-0347-01-00368-X
- Jean-Luc Brylinski, A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988), no. 1, 93–114. MR 950556
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Ivan Cherednik, Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and Macdonald’s operators, Internat. Math. Res. Notices 9 (1992), 171–180. MR 1185831, DOI 10.1155/S1073792892000199
- C. F. Dunkl and E. M. Opdam, Dunkl operators for complex reflection groups, Proc. London Math. Soc. (3) 86 (2003), no. 1, 70–108. MR 1971464, DOI 10.1112/S0024611502013825
- Pavel Etingof and Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348. MR 1881922, DOI 10.1007/s002220100171 [FG]FG M. Finkelberg, V. Ginzburg, Character sheaves for Cherednik algebras. (in preparation).
- Ofer Gabber, Some theorems on Azumaya algebras, The Brauer group (Sem., Les Plans-sur-Bex, 1980) Lecture Notes in Math., vol. 844, Springer, Berlin, 1981, pp. 129–209. MR 611868
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- Wee Liang Gan and Victor Ginzburg, Quantization of Slodowy slices, Int. Math. Res. Not. 5 (2002), 243–255. MR 1876934, DOI 10.1155/S107379280210609X [GG2]GG2 W. L. Gan, V. Ginzburg, Almost-commuting variety, D-modules, and Cherednik Algebras, Int. Math. Res. Publ. (2006). arXiv:math.RT/0409262. [GS]g I. Gordon, T. Stafford, Rational Cherednik algebras and Hilbert schemes of points. Adv. in Math. (2006). [ arXiv:math.RA/0407516].
- Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1); Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. MR 0354651
- Mark Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), no. 2, 371–407. MR 1918676, DOI 10.1007/s002220200219
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Takahiro Hayashi, Sugawara operators and Kac-Kazhdan conjecture, Invent. Math. 94 (1988), no. 1, 13–52. MR 958588, DOI 10.1007/BF01394343
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Jens Carsten Jantzen, Representations of Lie algebras in prime characteristic, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 185–235. Notes by Iain Gordon. MR 1649627
- Nicholas M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 175–232. MR 291177, DOI 10.1007/BF02684688
- D. Kazhdan, B. Kostant, and S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure Appl. Math. 31 (1978), no. 4, 481–507. MR 478225, DOI 10.1002/cpa.3160310405
- Shrawan Kumar and Jesper Funch Thomsen, Frobenius splitting of Hilbert schemes of points on surfaces, Math. Ann. 319 (2001), no. 4, 797–808. MR 1825408, DOI 10.1007/PL00004459
- Frédéric Latour, Representations of rational Cherednik algebras of rank one in positive characteristic, J. Pure Appl. Algebra 195 (2005), no. 1, 97–112. MR 2100312, DOI 10.1016/j.jpaa.2004.03.010
- V. B. Mehta and Wilberd van der Kallen, On a Grauert-Riemenschneider vanishing theorem for Frobenius split varieties in characteristic $p$, Invent. Math. 108 (1992), no. 1, 11–13. MR 1156382, DOI 10.1007/BF02100595
- Hiraku Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18, American Mathematical Society, Providence, RI, 1999. MR 1711344, DOI 10.1090/ulect/018
- Hiraku Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), no. 3, 515–560. MR 1604167, DOI 10.1215/S0012-7094-98-09120-7
- Alexei Oblomkov, Double affine Hecke algebras and Calogero-Moser spaces, Represent. Theory 8 (2004), 243–266. MR 2077482, DOI 10.1090/S1088-4165-04-00246-8
- Alexander Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), no. 1, 1–55. With an appendix by Serge Skryabin. MR 1929302, DOI 10.1006/aima.2001.2063
- Alexander Premet and Serge Skryabin, Representations of restricted Lie algebras and families of associative $\scr L$-algebras, J. Reine Angew. Math. 507 (1999), 189–218. MR 1670211, DOI 10.1515/crll.1999.507.189
- Daniel Quillen, On the endomorphism ring of a simple module over an enveloping algebra, Proc. Amer. Math. Soc. 21 (1969), 171–172. MR 238892, DOI 10.1090/S0002-9939-1969-0238892-4
- George Wilson, Collisions of Calogero-Moser particles and an adelic Grassmannian, Invent. Math. 133 (1998), no. 1, 1–41. With an appendix by I. G. Macdonald. MR 1626461, DOI 10.1007/s002220050237
Bibliographic Information
- Roman Bezrukavnikov
- Affiliation: Department of Mathematics, M.I.T., 77 Massachusetts Ave, Cambridge, Massachusetts 02139
- MR Author ID: 347192
- Email: bezrukav@math.mit.edu
- Michael Finkelberg
- Affiliation: Independent University of Moscow, 11 Bolshoy Vlasyevskiy per., 119002 Moscow, Russia
- MR Author ID: 304673
- Email: fnklberg@mccme.ru
- Victor Ginzburg
- Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- Email: ginzburg@math.uchicago.edu
- Pavel Etingof
- Affiliation: Department of Mathematics, M.I.T., 77 Massachusetts Ave, Cambridge, Massachusetts 02139
- MR Author ID: 289118
- Email: etingof@math.mit.edu
- Received by editor(s): May 4, 2005
- Received by editor(s) in revised form: February 19, 2006
- Published electronically: April 17, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 10 (2006), 254-298
- DOI: https://doi.org/10.1090/S1088-4165-06-00309-8
- MathSciNet review: 2219114
Dedicated: To David Kazhdan with admiration