Character sheaves on disconnected groups, IX
HTML articles powered by AMS MathViewer
- by G. Lusztig
- Represent. Theory 10 (2006), 353-379
- DOI: https://doi.org/10.1090/S1088-4165-06-00315-3
- Published electronically: August 17, 2006
- PDF | Request permission
Abstract:
We associate a two-sided cell to any (parabolic) character sheaf. We study the interaction between the duality operator for character sheaves and the operation of “twisted induction".References
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- Victor Ginsburg, Admissible modules on a symmetric space, Astérisque 173-174 (1989), 9–10, 199–255. Orbites unipotentes et représentations, III. MR 1021512 [Gr]GR I. Grojnowski, Character sheaves on symmetric spaces, Ph.D. thesis, MIT, 1992.
- George Lusztig, Character sheaves. I, Adv. in Math. 56 (1985), no. 3, 193–237. MR 792706, DOI 10.1016/0001-8708(85)90034-9
- G. Lusztig, Character sheaves on disconnected groups. I, Represent. Theory 7 (2003), 374–403. MR 2017063, DOI 10.1090/S1088-4165-03-00204-8
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- George Lusztig, Parabolic character sheaves. I, Mosc. Math. J. 4 (2004), no. 1, 153–179, 311 (English, with English and Russian summaries). MR 2074987, DOI 10.17323/1609-4514-2004-4-1-153-179
- I. Mirković and K. Vilonen, Characteristic varieties of character sheaves, Invent. Math. 93 (1988), no. 2, 405–418. MR 948107, DOI 10.1007/BF01394339
Bibliographic Information
- G. Lusztig
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Received by editor(s): February 8, 2006
- Published electronically: August 17, 2006
- Additional Notes: Supported in part by the National Science Foundation
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 10 (2006), 353-379
- MSC (2000): Primary 20G99
- DOI: https://doi.org/10.1090/S1088-4165-06-00315-3
- MathSciNet review: 2240705