Relative Kazhdan–Lusztig cells
Author:
Meinolf Geck
Journal:
Represent. Theory 10 (2006), 481-524
MSC (2000):
Primary 20C08; Secondary 20G40
DOI:
https://doi.org/10.1090/S1088-4165-06-00287-1
Published electronically:
November 14, 2006
MathSciNet review:
2266700
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we study the Kazhdan–Lusztig cells of a Coxeter group $W$ in a “relative” setting, with respect to a parabolic subgroup $W_I \subseteq W$. This relies on a factorization of the Kazhdan–Lusztig basis $\{\mathbf {C}_w\}$ of the corresponding (multi-parameter) Iwahori–Hecke algebra with respect to $W_I$. We obtain two applications to the “asymptotic case” in type $B_n$, as introduced by Bonnafé and Iancu: we show that $\{\mathbf {C}_w\}$ is a “cellular basis” in the sense of Graham and Lehrer, and we construct an analogue of Lusztig’s canonical isomorphism from the Iwahori–Hecke algebra to the group algebra of the underlying Weyl group of type $B_n$.
- Susumu Ariki, Robinson-Schensted correspondence and left cells, Combinatorial methods in representation theory (Kyoto, 1998) Adv. Stud. Pure Math., vol. 28, Kinokuniya, Tokyo, 2000, pp. 1–20. MR 1855588, DOI https://doi.org/10.2969/aspm/02810001
- Dan Barbasch and David Vogan, Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra 80 (1983), no. 2, 350–382. MR 691809, DOI https://doi.org/10.1016/0021-8693%2883%2990006-6
- Cédric Bonnafé and Lacrimioara Iancu, Left cells in type $B_n$ with unequal parameters, Represent. Theory 7 (2003), 587–609. MR 2017068, DOI https://doi.org/10.1090/S1088-4165-03-00188-2 BI2 C. Bonnafé, Two-sided cells in type $B$ in the asymptotic case, Journal of Algebra 304 (2006), 216–236.
- Richard Dipper and Gordon James, Representations of Hecke algebras of type $B_n$, J. Algebra 146 (1992), no. 2, 454–481. MR 1152915, DOI https://doi.org/10.1016/0021-8693%2892%2990078-Z
- Richard Dipper, Gordon James, and Eugene Murphy, Hecke algebras of type $B_n$ at roots of unity, Proc. London Math. Soc. (3) 70 (1995), no. 3, 505–528. MR 1317512, DOI https://doi.org/10.1112/plms/s3-70.3.505
- Meinolf Geck, Kazhdan-Lusztig cells and decomposition numbers, Represent. Theory 2 (1998), 264–277. MR 1628035, DOI https://doi.org/10.1090/S1088-4165-98-00042-9
- Meinolf Geck, On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc. 35 (2003), no. 5, 608–614. MR 1989489, DOI https://doi.org/10.1112/S0024609303002236
- Meinolf Geck, Computing Kazhdan-Lusztig cells for unequal parameters, J. Algebra 281 (2004), no. 1, 342–365. MR 2091976, DOI https://doi.org/10.1016/j.jalgebra.2004.07.029
- Meinolf Geck and Lacrimioara Iancu, Lusztig’s $a$-function in type $B_n$ in the asymptotic case, Nagoya Math. J. 182 (2006), 199–240. MR 2235342, DOI https://doi.org/10.1017/S0027763000026878
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI https://doi.org/10.1007/BF01232365
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI https://doi.org/10.1007/BF01390031
- George Lusztig, On a theorem of Benson and Curtis, J. Algebra 71 (1981), no. 2, 490–498. MR 630610, DOI https://doi.org/10.1016/0021-8693%2881%2990188-5
- G. Lusztig, Left cells in Weyl groups, Lie group representations, I (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 99–111. MR 727851, DOI https://doi.org/10.1007/BFb0071433
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472
- George Lusztig, Cells in affine Weyl groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 255–287. MR 803338, DOI https://doi.org/10.2969/aspm/00610255
- G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442 max M. Neunhöffer, Untersuchungen zu James’ Vermutung über Iwahori–Hecke–Algebren vom Typ $A$, Ph.D. Thesis, RWTH Aachen, 2003.
- Jean-Luc Brylinski, (Co)-homologie d’intersection et faisceaux pervers, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 129–157 (French). MR 689529
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20C08, 20G40
Retrieve articles in all journals with MSC (2000): 20C08, 20G40
Additional Information
Meinolf Geck
Affiliation:
Institut Camille Jordan, bat. Jean Braconnier, Université Lyon 1, 21 av Claude Bernard, F–69622 Villeurbanne Cedex, France
Address at time of publication:
Department of Mathematical Sciences, King’s College, Aberdeen University, Aberdeen AB24 3UE, UK
MR Author ID:
272405
Email:
geck@maths.abdn.ac.uk
Received by editor(s):
May 30, 2005
Published electronically:
November 14, 2006
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.