Relative Kazhdan–Lusztig cells
HTML articles powered by AMS MathViewer
- by Meinolf Geck
- Represent. Theory 10 (2006), 481-524
- DOI: https://doi.org/10.1090/S1088-4165-06-00287-1
- Published electronically: November 14, 2006
- PDF | Request permission
Abstract:
In this paper, we study the Kazhdan–Lusztig cells of a Coxeter group $W$ in a “relative” setting, with respect to a parabolic subgroup $W_I \subseteq W$. This relies on a factorization of the Kazhdan–Lusztig basis $\{\mathbf {C}_w\}$ of the corresponding (multi-parameter) Iwahori–Hecke algebra with respect to $W_I$. We obtain two applications to the “asymptotic case” in type $B_n$, as introduced by Bonnafé and Iancu: we show that $\{\mathbf {C}_w\}$ is a “cellular basis” in the sense of Graham and Lehrer, and we construct an analogue of Lusztig’s canonical isomorphism from the Iwahori–Hecke algebra to the group algebra of the underlying Weyl group of type $B_n$.References
- Susumu Ariki, Robinson-Schensted correspondence and left cells, Combinatorial methods in representation theory (Kyoto, 1998) Adv. Stud. Pure Math., vol. 28, Kinokuniya, Tokyo, 2000, pp. 1–20. MR 1855588, DOI 10.2969/aspm/02810001
- Dan Barbasch and David Vogan, Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra 80 (1983), no. 2, 350–382. MR 691809, DOI 10.1016/0021-8693(83)90006-6
- Cédric Bonnafé and Lacrimioara Iancu, Left cells in type $B_n$ with unequal parameters, Represent. Theory 7 (2003), 587–609. MR 2017068, DOI 10.1090/S1088-4165-03-00188-2 BI2 C. Bonnafé, Two-sided cells in type $B$ in the asymptotic case, Journal of Algebra 304 (2006), 216–236.
- Richard Dipper and Gordon James, Representations of Hecke algebras of type $B_n$, J. Algebra 146 (1992), no. 2, 454–481. MR 1152915, DOI 10.1016/0021-8693(92)90078-Z
- Richard Dipper, Gordon James, and Eugene Murphy, Hecke algebras of type $B_n$ at roots of unity, Proc. London Math. Soc. (3) 70 (1995), no. 3, 505–528. MR 1317512, DOI 10.1112/plms/s3-70.3.505
- Meinolf Geck, Kazhdan-Lusztig cells and decomposition numbers, Represent. Theory 2 (1998), 264–277. MR 1628035, DOI 10.1090/S1088-4165-98-00042-9
- Meinolf Geck, On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc. 35 (2003), no. 5, 608–614. MR 1989489, DOI 10.1112/S0024609303002236
- Meinolf Geck, Computing Kazhdan-Lusztig cells for unequal parameters, J. Algebra 281 (2004), no. 1, 342–365. MR 2091976, DOI 10.1016/j.jalgebra.2004.07.029
- Meinolf Geck and Lacrimioara Iancu, Lusztig’s $a$-function in type $B_n$ in the asymptotic case, Nagoya Math. J. 182 (2006), 199–240. MR 2235342, DOI 10.1017/S0027763000026878
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI 10.1007/BF01232365
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- George Lusztig, On a theorem of Benson and Curtis, J. Algebra 71 (1981), no. 2, 490–498. MR 630610, DOI 10.1016/0021-8693(81)90188-5
- G. Lusztig, Left cells in Weyl groups, Lie group representations, I (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 99–111. MR 727851, DOI 10.1007/BFb0071433
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- George Lusztig, Cells in affine Weyl groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 255–287. MR 803338, DOI 10.2969/aspm/00610255
- G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442, DOI 10.1090/crmm/018 max M. Neunhöffer, Untersuchungen zu James’ Vermutung über Iwahori–Hecke–Algebren vom Typ $A$, Ph.D. Thesis, RWTH Aachen, 2003.
- Jean-Luc Brylinski, (Co)-homologie d’intersection et faisceaux pervers, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 129–157 (French). MR 689529
Bibliographic Information
- Meinolf Geck
- Affiliation: Institut Camille Jordan, bat. Jean Braconnier, Université Lyon 1, 21 av Claude Bernard, F–69622 Villeurbanne Cedex, France
- Address at time of publication: Department of Mathematical Sciences, King’s College, Aberdeen University, Aberdeen AB24 3UE, UK
- MR Author ID: 272405
- Email: geck@maths.abdn.ac.uk
- Received by editor(s): May 30, 2005
- Published electronically: November 14, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 10 (2006), 481-524
- MSC (2000): Primary 20C08; Secondary 20G40
- DOI: https://doi.org/10.1090/S1088-4165-06-00287-1
- MathSciNet review: 2266700