## Jacquet modules of $p$-adic general linear groups

HTML articles powered by AMS MathViewer

- by Chris Jantzen PDF
- Represent. Theory
**11**(2007), 45-83 Request permission

## Abstract:

In this paper, we study Jacquet modules for $p$-adic general linear groups. More precisely, we have results—formulas and algorithms—aimed at addressing the following question: Given the Langlands data for an irreducible representation, can we determine its (semisimplified) Jacquet module? We use our results to answer this question in a number of cases, as well as to recover some familiar results as relatively easy consequences.## References

- Anne-Marie Aubert,
*Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif $p$-adique*, Trans. Amer. Math. Soc.**347**(1995), no. 6, 2179–2189 (French, with English summary). MR**1285969**, DOI 10.1090/S0002-9947-1995-1285969-0 - I. N. Bernstein and A. V. Zelevinsky,
*Induced representations of reductive ${\mathfrak {p}}$-adic groups. I*, Ann. Sci. École Norm. Sup. (4)**10**(1977), no. 4, 441–472. MR**579172**, DOI 10.24033/asens.1333 - Armand Borel and Nolan R. Wallach,
*Continuous cohomology, discrete subgroups, and representations of reductive groups*, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR**554917** - Colin J. Bushnell and Philip C. Kutzko,
*The admissible dual of $\textrm {GL}(N)$ via compact open subgroups*, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR**1204652**, DOI 10.1515/9781400882496 - W. Casselman, Introduction to the theory of admissible representations of $p$-adic reductive groups, preprint.
- W. Casselman,
*The Steinberg character as a true character*, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 413–417. MR**0338273** - Chris Jantzen,
*Degenerate principal series for symplectic groups*, Mem. Amer. Math. Soc.**102**(1993), no. 488, xiv+111. MR**1134591**, DOI 10.1090/memo/0488 - Chris Jantzen,
*On supports of induced representations for symplectic and odd-orthogonal groups*, Amer. J. Math.**119**(1997), no. 6, 1213–1262. MR**1481814**, DOI 10.1353/ajm.1997.0039 - Chris Jantzen,
*Some remarks on degenerate principal series*, Pacific J. Math.**186**(1998), no. 1, 67–87. MR**1665057**, DOI 10.2140/pjm.1998.186.67 - Chris Jantzen,
*On square-integrable representations of classical $p$-adic groups*, Canad. J. Math.**52**(2000), no. 3, 539–581. MR**1758232**, DOI 10.4153/CJM-2000-025-7 - Shin-ichi Kato,
*Duality for representations of a Hecke algebra*, Proc. Amer. Math. Soc.**119**(1993), no. 3, 941–946. MR**1215028**, DOI 10.1090/S0002-9939-1993-1215028-8 - Harold Knight and Andrei Zelevinsky,
*Representations of quivers of type $A$ and the multisegment duality*, Adv. Math.**117**(1996), no. 2, 273–293. MR**1371654**, DOI 10.1006/aima.1996.0013 - Takuya Konno,
*A note on the Langlands classification and irreducibility of induced representations of $p$-adic groups*, Kyushu J. Math.**57**(2003), no. 2, 383–409. MR**2050093**, DOI 10.2206/kyushujm.57.383 - C. Mœglin and J.-L. Waldspurger,
*Sur l’involution de Zelevinski*, J. Reine Angew. Math.**372**(1986), 136–177 (French). MR**863522**, DOI 10.1515/crll.1986.372.136 - Peter Schneider and Ulrich Stuhler,
*Representation theory and sheaves on the Bruhat-Tits building*, Inst. Hautes Études Sci. Publ. Math.**85**(1997), 97–191. MR**1471867**, DOI 10.1007/BF02699536 - Allan J. Silberger,
*The Langlands quotient theorem for $p$-adic groups*, Math. Ann.**236**(1978), no. 2, 95–104. MR**507262**, DOI 10.1007/BF01351383 - Marko Tadić,
*Induced representations of $\textrm {GL}(n,A)$ for $p$-adic division algebras $A$*, J. Reine Angew. Math.**405**(1990), 48–77. MR**1040995**, DOI 10.1515/crll.1990.405.48 - Marko Tadić,
*Structure arising from induction and Jacquet modules of representations of classical $p$-adic groups*, J. Algebra**177**(1995), no. 1, 1–33. MR**1356358**, DOI 10.1006/jabr.1995.1284 - Marko Tadić,
*On reducibility of parabolic induction*, Israel J. Math.**107**(1998), 29–91. MR**1658535**, DOI 10.1007/BF02764004 - A. V. Zelevinsky,
*Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$*, Ann. Sci. École Norm. Sup. (4)**13**(1980), no. 2, 165–210. MR**584084**, DOI 10.24033/asens.1379

## Additional Information

**Chris Jantzen**- Affiliation: Department of Mathematics, East Carolina University, Greenville, North Carolina 27858
- MR Author ID: 316181
- Email: jantzenc@ecu.edu
- Received by editor(s): October 11, 2006
- Published electronically: April 18, 2007
- Additional Notes: This research was supported in part by NSA grant H98230-04-1-0029 and the East Carolina University College of Arts and Sciences
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory
**11**(2007), 45-83 - MSC (2000): Primary 22E50
- DOI: https://doi.org/10.1090/S1088-4165-07-00316-0
- MathSciNet review: 2306606