Auslander Regularity of $p$-adic Distribution Algebras
HTML articles powered by AMS MathViewer
- by Tobias Schmidt
- Represent. Theory 12 (2008), 37-57
- DOI: https://doi.org/10.1090/S1088-4165-08-00323-3
- Published electronically: February 6, 2008
- PDF | Request permission
Abstract:
Given a compact $p$-adic Lie group over an arbitrary base field we prove that its distribution algebra is Fréchet-Stein with Auslander regular Banach algebras whose global dimensions are bounded above by the dimension of the group. As an application, we show that nonzero coadmissible modules coming from smooth or, more generally, $U(\mathfrak {g})$-finite representations have a maximal grade number (codimension) equal to the dimension of the group.References
- Bourbaki, N.: Commutative Algebra, Chap. 1-7. Paris: Hermann, 1972.
- S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961, DOI 10.1007/978-3-642-52229-1
- Bourbaki, N.: Groupes et algèbres de Lie. Chap. 2-3. Paris: Hermann, 1972.
- Bourbaki, N.: Variétés différentielles et analytiques. Fascicule de résultats. Paris: Hermann, 1967.
- Bourbaki, N.: Topological Vector Spaces. Chap. 1-5. Berlin, Heidelberg: Springer, 2003.
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$ groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR 1720368, DOI 10.1017/CBO9780511470882
- Frommer, H.: The locally analytic principal series of split reductive groups. Münster: SFB-preprint 265 (2003).
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Jan Kohlhaase, Invariant distributions on $p$-adic analytic groups, Duke Math. J. 137 (2007), no. 1, 19–62. MR 2309143, DOI 10.1215/S0012-7094-07-13712-8
- Michel Lazard, Groupes analytiques $p$-adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389–603 (French). MR 209286
- Li Huishi, van Oystaeyen, F.: Zariskian Filtrations. Dordrecht: Kluwer, 1996.
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- P. Schneider, J. Teitelbaum, and Dipendra Prasad, $U({\mathfrak {g}})$-finite locally analytic representations, Represent. Theory 5 (2001), 111–128. With an appendix by Dipendra Prasad. MR 1835001, DOI 10.1090/S1088-4165-01-00109-1
- P. Schneider and J. Teitelbaum, $p$-adic Fourier theory, Doc. Math. 6 (2001), 447–481. MR 1871671
- Peter Schneider and Jeremy Teitelbaum, Locally analytic distributions and $p$-adic representation theory, with applications to $\textrm {GL}_2$, J. Amer. Math. Soc. 15 (2002), no. 2, 443–468. MR 1887640, DOI 10.1090/S0894-0347-01-00377-0
- P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359–380. MR 1900706, DOI 10.1007/BF02784538
- Peter Schneider and Jeremy Teitelbaum, Algebras of $p$-adic distributions and admissible representations, Invent. Math. 153 (2003), no. 1, 145–196. MR 1990669, DOI 10.1007/s00222-002-0284-1
- Peter Schneider and Jeremy Teitelbaum, Duality for admissible locally analytic representations, Represent. Theory 9 (2005), 297–326. MR 2133762, DOI 10.1090/S1088-4165-05-00277-3
Bibliographic Information
- Tobias Schmidt
- Affiliation: Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, D-48149 Münster, Germany
- Address at time of publication: Département de Mathématiques, Bâtiment 425, Université Paris-Sud 11, F-91405 Orsay Cedex, France
- Email: toschmid@math.uni-muenster.de
- Received by editor(s): July 5, 2007
- Published electronically: February 6, 2008
- Additional Notes: The author was supported by a grant within the DFG Graduiertenkolleg “Analytische Topologie und Metageometric” at Münster
- © Copyright 2008 American Mathematical Society
- Journal: Represent. Theory 12 (2008), 37-57
- MSC (2000): Primary 22E50; Secondary 11S99
- DOI: https://doi.org/10.1090/S1088-4165-08-00323-3
- MathSciNet review: 2375595