## Weighted projective spaces and minimal nilpotent orbits

HTML articles powered by AMS MathViewer

- by Carlo A. Rossi
- Represent. Theory
**12**(2008), 208-224 - DOI: https://doi.org/10.1090/S1088-4165-08-00328-2
- Published electronically: April 17, 2008
- PDF | Request permission

## Abstract:

We investigate (twisted) rings of differential operators on the resolution of singularities of an irreducible component $\overline X$ of $\overline O_{\mathrm {min}}\cap \mathfrak n_+$ (where $\overline O_{\mathrm {min}}$ is the (Zariski) closure of the minimal nilpotent orbit of $\mathfrak {sp}_{2n}$ and $\mathfrak n_+$ is the Borel subalgebra of $\mathfrak {sp}_{2n}$) using toric geometry, and show that they are homomorphic images of a certain family of associative subalgebras of $U(\mathfrak {sp}_{2n})$, which contains the maximal parabolic subalgebra $\mathfrak p$ determining $\overline O_{\min }$. Further, using Fourier transforms on Weyl algebras, we show that (twisted) rings of well-suited weighted projective spaces are obtained from the same family of subalgebras. Finally, we investigate this family of subalgebras from the representation-theoretical point of view and, among other things, rediscover in a different framework irreducible highest weight modules for the UEA of $\mathfrak {sp}_{2n}$.## References

- Walter Borho and Jean-Luc Brylinski,
*Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules*, Invent. Math.**69**(1982), no. 3, 437–476. MR**679767**, DOI 10.1007/BF01389364 - Nicolas Bourbaki,
*Lie groups and Lie algebras. Chapters 4–6*, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR**1890629**, DOI 10.1007/978-3-540-89394-3 - Giovanni Felder and Carlo A. Rossi,
*Differential operators on toric varieties and Fourier transform*(2007), available at http://arxiv.org/abs/math/0705.1709v3. - William Fulton,
*Introduction to toric varieties*, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR**1234037**, DOI 10.1515/9781400882526 - Robin Hartshorne,
*Algebraic geometry*, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR**0463157**, DOI 10.1007/978-1-4757-3849-0 - T. Levasseur, S. P. Smith, and J. T. Stafford,
*The minimal nilpotent orbit, the Joseph ideal, and differential operators*, J. Algebra**116**(1988), no. 2, 480–501. MR**953165**, DOI 10.1016/0021-8693(88)90231-1 - Ian M. Musson,
*Actions of tori on Weyl algebras*, Comm. Algebra**16**(1988), no. 1, 139–148. MR**921946**, DOI 10.1080/00927878808823565 - Ian M. Musson,
*Differential operators on toric varieties*, J. Pure Appl. Algebra**95**(1994), no. 3, 303–315. MR**1295963**, DOI 10.1016/0022-4049(94)90064-7 - Ian M. Musson and Sonia L. Rueda,
*Finite dimensional representations of invariant differential operators*, Trans. Amer. Math. Soc.**357**(2005), no. 7, 2739–2752. MR**2139525**, DOI 10.1090/S0002-9947-04-03573-1 - Michel Van den Bergh,
*Differential operators on semi-invariants for tori and weighted projective spaces*, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 255–272. MR**1180993**, DOI 10.1007/BFb0083507

## Bibliographic Information

**Carlo A. Rossi**- Affiliation: Department of mathematics, ETH Zürich, 8092 Zürich, Switzerland
- Email: crossi@math.ethz.ch
- Received by editor(s): August 17, 2007
- Received by editor(s) in revised form: November 8, 2007
- Published electronically: April 17, 2008
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory
**12**(2008), 208-224 - MSC (2000): Primary 13N10
- DOI: https://doi.org/10.1090/S1088-4165-08-00328-2
- MathSciNet review: 2403559