Centers of degenerate cyclotomic Hecke algebras and parabolic category $\mathcal O$
Author:
Jonathan Brundan
Journal:
Represent. Theory 12 (2008), 236-259
MSC (2000):
Primary 20C08, 17B20
DOI:
https://doi.org/10.1090/S1088-4165-08-00333-6
Published electronically:
July 29, 2008
MathSciNet review:
2424964
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove that the center of each degenerate cyclotomic Hecke algebra associated to the complex reflection group of type $B_d(l)$ consists of symmetric polynomials in its commuting generators. The classification of the blocks of the degenerate cyclotomic Hecke algebras is an easy consequence. We then apply Schur-Weyl duality for higher levels to deduce analogous results for parabolic category $\mathcal O$ for the Lie algebra $\mathfrak {gl}_n(\mathbb {C})$.
- Tomoyuki Arakawa and Takeshi Suzuki, Duality between $\mathfrak s\mathfrak l_n({\bf C})$ and the degenerate affine Hecke algebra, J. Algebra 209 (1998), no. 1, 288–304. MR 1652134, DOI https://doi.org/10.1006/jabr.1998.7530
- Susumu Ariki, Andrew Mathas, and Hebing Rui, Cyclotomic Nazarov-Wenzl algebras, Nagoya Math. J. 182 (2006), 47–134. MR 2235339, DOI https://doi.org/10.1017/S0027763000026842
- Ken A. Brown and Ken R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002. MR 1898492
- Jonathan Brundan, Dual canonical bases and Kazhdan-Lusztig polynomials, J. Algebra 306 (2006), no. 1, 17–46. MR 2271570, DOI https://doi.org/10.1016/j.jalgebra.2006.01.053
- J. Brundan, Symmetric functions, parabolic category $\mathcal O$ and the Springer fiber, Duke Math. J. 143 (2008), 41–79.
- Jonathan Brundan and Alexander Kleshchev, Hecke-Clifford superalgebras, crystals of type $A_{2l}^{(2)}$ and modular branching rules for $\hat S_n$, Represent. Theory 5 (2001), 317–403. MR 1870595, DOI https://doi.org/10.1090/S1088-4165-01-00123-6
- Jonathan Brundan and Alexander Kleshchev, Representation theory of symmetric groups and their double covers, Groups, combinatorics & geometry (Durham, 2001) World Sci. Publ., River Edge, NJ, 2003, pp. 31–53. MR 1994959, DOI https://doi.org/10.1142/9789812564481_0003
- J. Brundan and A. Kleshchev, Schur-Weyl duality for higher levels, to appear in Selecta Math.; math.RT/0605217.
- Roger W. Carter and George Lusztig, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), 193–242. MR 354887, DOI https://doi.org/10.1007/BF01214125
- V. G. Drinfel′d, Degenerate affine Hecke algebras and Yangians, Funktsional. Anal. i Prilozhen. 20 (1986), no. 1, 69–70 (Russian). MR 831053
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- Thomas J. Enright and Brad Shelton, Categories of highest weight modules: applications to classical Hermitian symmetric pairs, Mem. Amer. Math. Soc. 67 (1987), no. 367, iv+94. MR 888703, DOI https://doi.org/10.1090/memo/0367
- I. Grojnowski, Blocks of the cyclotomic Hecke algebra, preprint, 1999.
- Ronald S. Irving, Projective modules in the category ${\scr O}_S$: self-duality, Trans. Amer. Math. Soc. 291 (1985), no. 2, 701–732. MR 800259, DOI https://doi.org/10.1090/S0002-9947-1985-0800259-9
- G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR 513828
- Gordon James and Andrew Mathas, The Jantzen sum formula for cyclotomic $q$-Schur algebras, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5381–5404. MR 1665333, DOI https://doi.org/10.1090/S0002-9947-00-02492-2
- Jens C. Jantzen, Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren, Math. Ann. 226 (1977), no. 1, 53–65. MR 439902, DOI https://doi.org/10.1007/BF01391218
- A.-A. A. Jucys, Symmetric polynomials and the center of the symmetric group ring, Rep. Mathematical Phys. 5 (1974), no. 1, 107–112. MR 419576, DOI https://doi.org/10.1016/0034-4877%2874%2990019-6
- Mikhail Khovanov, Crossingless matchings and the cohomology of $(n,n)$ Springer varieties, Commun. Contemp. Math. 6 (2004), no. 4, 561–577. MR 2078414, DOI https://doi.org/10.1142/S0219199704001471
- Alexander Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005. MR 2165457
- George Lusztig, Cuspidal local systems and graded Hecke algebras. I, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145–202. MR 972345
- Sinéad Lyle and Andrew Mathas, Blocks of cyclotomic Hecke algebras, Adv. Math. 216 (2007), no. 2, 854–878. MR 2351381, DOI https://doi.org/10.1016/j.aim.2007.06.008
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Volodymyr Mazorchuk and Catharina Stroppel, Projective-injective modules, Serre functors and symmetric algebras, J. Reine Angew. Math. 616 (2008), 131–165. MR 2369489, DOI https://doi.org/10.1515/CRELLE.2008.020
- G. E. Murphy, The idempotents of the symmetric group and Nakayama’s conjecture, J. Algebra 81 (1983), no. 1, 258–265. MR 696137, DOI https://doi.org/10.1016/0021-8693%2883%2990219-3
- K. Platt, Classifying the representation type of infinitesimal blocks of category $\mathcal O_S$, Ph.D. thesis, University of Georgia, 2008.
- O. Ruff, Centers of cyclotomic Sergeev superalgebras, preprint, 2008.
- C. Stroppel, Perverse sheaves on Grassmannians, Springer fibres and Khovanov homolog, to appear in Compositio Math.; math.RT/0608234.
- Weiqiang Wang, Vertex algebras and the class algebras of wreath products, Proc. London Math. Soc. (3) 88 (2004), no. 2, 381–404. MR 2032512, DOI https://doi.org/10.1112/S0024611503014382
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20C08, 17B20
Retrieve articles in all journals with MSC (2000): 20C08, 17B20
Additional Information
Jonathan Brundan
Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Email:
brundan@uoregon.edu
Received by editor(s):
August 15, 2006
Received by editor(s) in revised form:
June 25, 2008
Published electronically:
July 29, 2008
Additional Notes:
Research supported in part by NSF grant no. DMS-0654147.
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.