The center of quantum symmetric pair coideal subalgebras
HTML articles powered by AMS MathViewer
- by Stefan Kolb and Gail Letzter
- Represent. Theory 12 (2008), 294-326
- DOI: https://doi.org/10.1090/S1088-4165-08-00332-4
- Published electronically: August 27, 2008
- PDF | Request permission
Abstract:
The theory of quantum symmetric pairs as developed by the second author is based on coideal subalgebras of the quantized universal enveloping algebra for a semisimple Lie algebra. This paper investigates the center of these coideal subalgebras, proving that the center is a polynomial ring. A basis of the center is given in terms of a submonoid of the dominant integral weights.References
- Shôrô Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1–34. MR 153782
- Corrado De Concini and Victor G. Kac, Representations of quantum groups at roots of $1$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 471–506. MR 1103601
- Mathijs S. Dijkhuizen, Some remarks on the construction of quantum symmetric spaces, Acta Appl. Math. 44 (1996), no. 1-2, 59–80. Representations of Lie groups, Lie algebras and their quantum analogues. MR 1407040, DOI 10.1007/BF00116516
- Mathijs S. Dijkhuizen and Masatoshi Noumi, A family of quantum projective spaces and related $q$-hypergeometric orthogonal polynomials, Trans. Amer. Math. Soc. 350 (1998), no. 8, 3269–3296. MR 1432197, DOI 10.1090/S0002-9947-98-01971-0
- Mathijs S. Dijkhuizen and Jasper V. Stokman, Some limit transitions between $BC$ type orthogonal polynomials interpreted on quantum complex Grassmannians, Publ. Res. Inst. Math. Sci. 35 (1999), no. 3, 451–500. MR 1710751, DOI 10.2977/prims/1195143610
- Florence Fauquant-Millet, Sur une algèbre parabolique $P$ de $\check {U}_q(\textrm {sl}_{n+1})$ et ses semi-invariants par l’action adjointe de $P$, Bull. Sci. Math. 122 (1998), no. 7, 495–519 (French, with English and French summaries). MR 1653466, DOI 10.1016/S0007-4497(99)80002-5
- F. Fauquant-Millet and A. Joseph, Sur les semi-invariants d’une sous-algèbre parabolique d’une algèbre enveloppante quantifiée, Transform. Groups 6 (2001), no. 2, 125–142 (French, with English summary). MR 1835668, DOI 10.1007/BF01597132
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- N. Z. Iorgov and A. U. Klimyk, Classification theorem on irreducible representations of the $q$-deformed algebra $U_q’(\textrm {so}_n)$, Int. J. Math. Math. Sci. 2 (2005), 225–262. MR 2143754, DOI 10.1155/IJMMS.2005.225
- Anthony Joseph and Gail Letzter, Separation of variables for quantized enveloping algebras, Amer. J. Math. 116 (1994), no. 1, 127–177. MR 1262429, DOI 10.2307/2374984
- Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. MR 1315966, DOI 10.1007/978-3-642-78400-2
- Mâlek Stefan Kébé, Sur la classification des $\scr O$-algèbres quantiques, J. Algebra 212 (1999), no. 2, 626–659 (French). MR 1676857, DOI 10.1006/jabr.1998.7585
- S. Kolb, Quantum symmetric pairs and the reflection equation, Algebr. Represent. Theory, in press, DOI 10.1007/s10468-008-9093-6.
- Gail Letzter, Harish-Chandra modules for quantum symmetric pairs, Represent. Theory 4 (2000), 64–96. MR 1742961, DOI 10.1090/S1088-4165-00-00087-X
- Gail Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999), no. 2, 729–767. MR 1717368, DOI 10.1006/jabr.1999.8015
- Gail Letzter, Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ., vol. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 117–165. MR 1913438
- Gail Letzter, Quantum symmetric pairs and their zonal spherical functions, Transform. Groups 8 (2003), no. 3, 261–292. MR 1996417, DOI 10.1007/s00031-003-0719-9
- Gail Letzter, Quantum zonal spherical functions and Macdonald polynomials, Adv. Math. 189 (2004), no. 1, 88–147. MR 2093481, DOI 10.1016/j.aim.2003.11.007
- Gail Letzter, Invariant differential operators for quantum symmetric spaces, Mem. Amer. Math. Soc. 193 (2008), no. 903, vi+90. MR 2400554, DOI 10.1090/memo/0903
- I. G. Macdonald, Orthogonal polynomials associated with root systems, Sém. Lothar. Combin. 45 (2000/01), Art. B45a, 40. MR 1817334
- Masatoshi Noumi, Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, Adv. Math. 123 (1996), no. 1, 16–77. MR 1413836, DOI 10.1006/aima.1996.0066
- Masatoshi Noumi and Tetsuya Sugitani, Quantum symmetric spaces and related $q$-orthogonal polynomials, Group theoretical methods in physics (Toyonaka, 1994) World Sci. Publ., River Edge, NJ, 1995, pp. 28–40. MR 1413733
- Alexei A. Oblomkov and Jasper V. Stokman, Vector valued spherical functions and Macdonald-Koornwinder polynomials, Compos. Math. 141 (2005), no. 5, 1310–1350. MR 2157139, DOI 10.1112/S0010437X05001636
- È. B. Vinberg (ed.), Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences, vol. 41, Springer-Verlag, Berlin, 1994. Structure of Lie groups and Lie algebras; A translation of Current problems in mathematics. Fundamental directions. Vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990 [ MR1056485 (91b:22001)]; Translation by V. Minachin [V. V. Minakhin]; Translation edited by A. L. Onishchik and È. B. Vinberg. MR 1349140, DOI 10.1007/978-3-662-03066-0
- Marc Rosso, Analogues de la forme de Killing et du théorème d’Harish-Chandra pour les groupes quantiques, Ann. Sci. École Norm. Sup. (4) 23 (1990), no. 3, 445–467 (French). MR 1055444, DOI 10.24033/asens.1607
Bibliographic Information
- Stefan Kolb
- Affiliation: Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061
- Address at time of publication: School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, JCMB, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, United Kingdom
- MR Author ID: 699246
- Email: stefan.kolb@ed.ac.uk
- Gail Letzter
- Affiliation: Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061
- MR Author ID: 228201
- Email: gletzter@verizon.net
- Received by editor(s): February 27, 2006
- Received by editor(s) in revised form: June 18, 2008
- Published electronically: August 27, 2008
- Additional Notes: The first author was supported by the German Research Foundation (DFG)
The second was supported by grants from the National Security Agency - © Copyright 2008 American Mathematical Society
- Journal: Represent. Theory 12 (2008), 294-326
- MSC (2000): Primary 17B37
- DOI: https://doi.org/10.1090/S1088-4165-08-00332-4
- MathSciNet review: 2439008