Tempered endoscopy for real groups III: Inversion of transfer and $L$-packet structure
HTML articles powered by AMS MathViewer
- by D. Shelstad
- Represent. Theory 12 (2008), 369-402
- DOI: https://doi.org/10.1090/S1088-4165-08-00337-3
- Published electronically: October 17, 2008
- PDF | Request permission
Abstract:
This paper examines adjoint relations for spectral analogues of the geometric transfer factors of Langlands and Shelstad in the case of the tempered spectrum of a real reductive algebraic group where the complex points are connected. Each tempered irreducible character is then expanded explicitly in terms of endoscopic characters. The analysis is also reinterpreted in terms of structure on $L$-packets in the form conjectured recently in much greater generality by Arthur. A triviality result is proved for the Whittaker normalization of spectral transfer factors which simplifies the results for certain inner forms of a quasi-split group.References
- Arthur, J., Problems for real groups, Contemp. Math., vol. 472 (2008), 39–62.
- James Arthur, A note on $L$-packets, Pure Appl. Math. Q. 2 (2006), no. 1, Special Issue: In honor of John H. Coates., 199–217. MR 2217572, DOI 10.4310/PAMQ.2006.v2.n1.a9
- James Arthur, On the transfer of distributions: weighted orbital integrals, Duke Math. J. 99 (1999), no. 2, 209–283. MR 1708030, DOI 10.1215/S0012-7094-99-09909-X
- Jeffrey Adams, Dan Barbasch, and David A. Vogan Jr., The Langlands classification and irreducible characters for real reductive groups, Progress in Mathematics, vol. 104, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1162533, DOI 10.1007/978-1-4612-0383-4
- Jeffrey Adams and Joseph F. Johnson, Endoscopic groups and packets of nontempered representations, Compositio Math. 64 (1987), no. 3, 271–309. MR 918414
- Jeffrey Adams and David A. Vogan Jr., $L$-groups, projective representations, and the Langlands classification, Amer. J. Math. 114 (1992), no. 1, 45–138. MR 1147719, DOI 10.2307/2374739
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Henri Carayol and A. W. Knapp, Limits of discrete series with infinitesimal character zero, Trans. Amer. Math. Soc. 359 (2007), no. 11, 5611–5651. MR 2327045, DOI 10.1090/S0002-9947-07-04306-1
- Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101–184. MR 507800, DOI 10.1007/BF01390249
- Robert E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), no. 3, 365–399. MR 858284, DOI 10.1007/BF01458611
- Robert E. Kottwitz, Sign changes in harmonic analysis on reductive groups, Trans. Amer. Math. Soc. 278 (1983), no. 1, 289–297. MR 697075, DOI 10.1090/S0002-9947-1983-0697075-6
- Robert E. Kottwitz and Diana Shelstad, Foundations of twisted endoscopy, Astérisque 255 (1999), vi+190 (English, with English and French summaries). MR 1687096
- A. W. Knapp and Gregg Zuckerman, Classification of irreducible tempered representations of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2178–2180. MR 460545, DOI 10.1073/pnas.73.7.2178
- R. P. Langlands, Stable conjugacy: definitions and lemmas, Canadian J. Math. 31 (1979), no. 4, 700–725. MR 540901, DOI 10.4153/CJM-1979-069-2
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR 1011897, DOI 10.1090/surv/031/03
- R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), no. 1-4, 219–271. MR 909227, DOI 10.1007/BF01458070
- Shelstad, D., Tempered endoscopy for real groups I: geometric transfer with canonical factors, Contemp. Math., vol. 472 (2008), 215–248.
- Shelstad, D., Tempered endoscopy for real groups II: spectral transfer factors, in Automorphic Forms and the Langlands Program, International Press, 243–282 (in press).
- D. Shelstad, $L$-indistinguishability for real groups, Math. Ann. 259 (1982), no. 3, 385–430. MR 661206, DOI 10.1007/BF01456950
- D. Shelstad, Characters and inner forms of a quasi-split group over $\textbf {R}$, Compositio Math. 39 (1979), no. 1, 11–45. MR 539000
- Shelstad, D., Some character relations for real reductive algebraic groups, thesis.
- Diana Shelstad, Orbital integrals and a family of groups attached to a real reductive group, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 1, 1–31. MR 532374, DOI 10.24033/asens.1359
- Shelstad, D., Examples in endoscopy for real groups (notes for BIRS summer school, Aug. 08), preprint.
- Birgit Speh and David A. Vogan Jr., Reducibility of generalized principal series representations, Acta Math. 145 (1980), no. 3-4, 227–299. MR 590291, DOI 10.1007/BF02414191
- David A. Vogan Jr., Gel′fand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75–98. MR 506503, DOI 10.1007/BF01390063
Bibliographic Information
- D. Shelstad
- Affiliation: Department of Mathematics, Rutgers University, Newark, New Jersey 07102
- Email: shelstad@rutgers.edu
- Received by editor(s): January 15, 2008
- Published electronically: October 17, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 12 (2008), 369-402
- MSC (2000): Primary 22E45, 22E50
- DOI: https://doi.org/10.1090/S1088-4165-08-00337-3
- MathSciNet review: 2448289