Characters of Speh representations and Lewis Caroll identity
HTML articles powered by AMS MathViewer
- by Gaëtan Chenevier and David Renard
- Represent. Theory 12 (2008), 447-452
- DOI: https://doi.org/10.1090/S1088-4165-08-00339-7
- Published electronically: December 10, 2008
- PDF | Request permission
Abstract:
We give a new and elementary proof of Tadić formula for characters of Speh representations of $\mathrm {GL}(n,A)$, $A$ a central division algebra over a non-Archimedean local field, based on Lewis Caroll determinantal identity.References
- MIT, algebra course, http://www-math.mit.edu/18.013A/HTML/chapter_b/contents.html.
- A. I. Badulescu and D. A. Renard, Sur une conjecture de Tadić, Glas. Mat. Ser. III 39(59) (2004), no. 1, 49–54 (French, with English summary). MR 2055385, DOI 10.3336/gm.39.1.05
- Alexandru Ioan Badulescu, Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations, Invent. Math. 172 (2008), no. 2, 383–438. With an appendix by Neven Grbac. MR 2390289, DOI 10.1007/s00222-007-0104-8
- Dan Barbasch and David A. Vogan Jr., Unipotent representations of complex semisimple groups, Ann. of Math. (2) 121 (1985), no. 1, 41–110. MR 782556, DOI 10.2307/1971193
- Joseph N. Bernstein, $P$-invariant distributions on $\textrm {GL}(N)$ and the classification of unitary representations of $\textrm {GL}(N)$ (non-Archimedean case), Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 50–102. MR 748505, DOI 10.1007/BFb0073145
- Charles L. Dodgson, An elementary treatise on determinants, with their application to simultaneous linear equations and algebraic geometry, Macmillan, London, 1867.
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- George Lusztig and David A. Vogan Jr., Singularities of closures of $K$-orbits on flag manifolds, Invent. Math. 71 (1983), no. 2, 365–379. MR 689649, DOI 10.1007/BF01389103
- Dragan Miličić, On $C^{\ast }$-algebras with bounded trace, Glasnik Mat. Ser. III 8(28) (1973), 7–22 (English, with Serbo-Croatian summary). MR 324429
- Siddhartha Sahi, Jordan algebras and degenerate principal series, J. Reine Angew. Math. 462 (1995), 1–18. MR 1329899, DOI 10.1515/crll.1995.462.1
- Vincent Sécherre, Proof of the Tadic Conjecture $U0$ on the unitary dual of $GL(m,D)$, J. Reine Angew. Math.
- M. Tadić, On characters of irreducible unitary representations of general linear groups, Abh. Math. Sem. Univ. Hamburg 65 (1995), 341–363. MR 1359141, DOI 10.1007/BF02953339
- Marko Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 335–382. MR 870688, DOI 10.24033/asens.1510
- Marko Tadić, Induced representations of $\textrm {GL}(n,A)$ for $p$-adic division algebras $A$, J. Reine Angew. Math. 405 (1990), 48–77. MR 1040995, DOI 10.1515/crll.1990.405.48
- Marko Tadić, Representation theory of $\textrm {GL}(n)$ over a $p$-adic division algebra and unitarity in the Jacquet-Langlands correspondence, Pacific J. Math. 223 (2006), no. 1, 167–200. MR 2221023, DOI 10.2140/pjm.2006.223.167
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
Bibliographic Information
- Gaëtan Chenevier
- Affiliation: Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91 128 Palaiseau, France
- David Renard
- Affiliation: Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91 128 Palaiseau, France
- Received by editor(s): May 26, 2008
- Received by editor(s) in revised form: July 30, 2008
- Published electronically: December 10, 2008
- © Copyright 2008 American Mathematical Society
- Journal: Represent. Theory 12 (2008), 447-452
- MSC (2000): Primary 22E50, 11F70
- DOI: https://doi.org/10.1090/S1088-4165-08-00339-7
- MathSciNet review: 2465802