On unitary unipotent representations of $p$-adic groups and affine Hecke algebras with unequal parameters
HTML articles powered by AMS MathViewer
- by Dan Ciubotaru
- Represent. Theory 12 (2008), 453-498
- DOI: https://doi.org/10.1090/S1088-4165-08-00338-5
- Published electronically: December 15, 2008
- PDF | Request permission
Abstract:
We determine the unitary dual of the geometric graded Hecke algebras with unequal parameters which appear in Lusztig’s classification of unipotent representations for exceptional $p$-adic groups. The largest such algebra is of type $F_4.$ Via the Barbasch-Moy correspondence of unitarity applied to this setting, this is equivalent to the identification of the corresponding unitary unipotent representations with real central character of the $p$-adic groups. In order for this correspondence to be applicable here, we show (following Lusztig’s geometric classification, and Barbasch and Moy’s original argument) that the set of tempered modules with real central character for a geometric graded Hecke algebra is linearly independent when restricted to the Weyl group.References
- D. Alvis Induce/Restrict matrices for exceptional Weyl groups, preprint.
- D. Barbasch Unitary spherical spectrum for split classical groups, preprint, arXiv:math/0609828.
- D. Barbasch, D. Ciubotaru, Whittaker unitary dual of affine graded Hecke algebras of type $E$, preprint, arXiv:0708.4036.
- Dan Barbasch and Dan Ciubotaru, Spherical unitary principal series, Pure Appl. Math. Q. 1 (2005), no. 4, Special Issue: In memory of Armand Borel., 755–789. MR 2200999, DOI 10.4310/PAMQ.2005.v1.n4.a3
- Dan Barbasch and Allen Moy, A unitarity criterion for $p$-adic groups, Invent. Math. 98 (1989), no. 1, 19–37. MR 1010153, DOI 10.1007/BF01388842
- Dan Barbasch and Allen Moy, Reduction to real infinitesimal character in affine Hecke algebras, J. Amer. Math. Soc. 6 (1993), no. 3, 611–635. MR 1186959, DOI 10.1090/S0894-0347-1993-1186959-0
- Dan Barbasch and Allen Moy, Unitary spherical spectrum for $p$-adic classical groups, Acta Appl. Math. 44 (1996), no. 1-2, 3–37. Representations of Lie groups, Lie algebras and their quantum analogues. MR 1407038, DOI 10.1007/BF00116514
- Dan Barbasch and Allen Moy, Whittaker models with an Iwahori fixed vector, Representation theory and analysis on homogeneous spaces (New Brunswick, NJ, 1993) Contemp. Math., vol. 177, Amer. Math. Soc., Providence, RI, 1994, pp. 101–105. MR 1303602, DOI 10.1090/conm/177/01917
- W. M. Beynon and N. Spaltenstein, Green functions of finite Chevalley groups of type $E_{n}$ $(n=6,\,7,\,8)$, J. Algebra 88 (1984), no. 2, 584–614. MR 747534, DOI 10.1016/0021-8693(84)90084-X
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- Dan Ciubotaru, The unitary $\Bbb I$-spherical dual for split $p$-adic groups of type $F_4$, Represent. Theory 9 (2005), 94–137. MR 2123126, DOI 10.1090/S1088-4165-05-00206-2
- Dan Ciubotaru, Unitary $\scr I$-spherical representations for split $p$-adic $E_6$, Represent. Theory 10 (2006), 435–480. MR 2266699, DOI 10.1090/S1088-4165-06-00301-3
- Sam Evens, The Langlands classification for graded Hecke algebras, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1285–1290. MR 1322921, DOI 10.1090/S0002-9939-96-03295-9
- S. Kato, An exotic Deligne-Langlands correspondence for symplectic groups, preprint, arXiv:math/0601155.
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- Cathy Kriloff and Arun Ram, Representations of graded Hecke algebras, Represent. Theory 6 (2002), 31–69. MR 1915086, DOI 10.1090/S1088-4165-02-00160-7
- Larry Lambe and Bhama Srinivasan, A computation of Green functions for some classical groups, Comm. Algebra 18 (1990), no. 10, 3507–3545. MR 1063992, DOI 10.1080/00927879008824089
- George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635. MR 991016, DOI 10.1090/S0894-0347-1989-0991016-9
- George Lusztig, Cuspidal local systems and graded Hecke algebras. I, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145–202. MR 972345, DOI 10.1007/BF02699129
- George Lusztig, Cuspidal local systems and graded Hecke algebras. II, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 217–275. With errata for Part I [Inst. Hautes Études Sci. Publ. Math. No. 67 (1988), 145–202; MR0972345 (90e:22029)]. MR 1357201, DOI 10.1090/S1088-4165-02-00172-3
- G. Lusztig, Cuspidal local systems and graded Hecke algebras. III, Represent. Theory 6 (2002), 202–242. MR 1927954, DOI 10.1090/S1088-4165-02-00172-3
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- George Lusztig, Classification of unipotent representations of simple $p$-adic groups, Internat. Math. Res. Notices 11 (1995), 517–589. MR 1369407, DOI 10.1155/S1073792895000353
- George Lusztig, Character sheaves. V, Adv. in Math. 61 (1986), no. 2, 103–155. MR 849848, DOI 10.1016/0001-8708(86)90071-X
- Goran Muić, The unitary dual of $p$-adic $G_2$, Duke Math. J. 90 (1997), no. 3, 465–493. MR 1480543, DOI 10.1215/S0012-7094-97-09012-8
- Eric M. Opdam, On the spectral decomposition of affine Hecke algebras, J. Inst. Math. Jussieu 3 (2004), no. 4, 531–648. MR 2094450, DOI 10.1017/S1474748004000155
- Eric M. Opdam, A generating function for the trace of the Iwahori-Hecke algebra, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000) Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. 301–323. MR 1985730
- E. Opdam, M. Solleveld, Discrete series characters for affine Hecke algebras and their formal degrees, preprint, arXiv:0804.0026.
- Mark Reeder, Formal degrees and $L$-packets of unipotent discrete series representations of exceptional $p$-adic groups, J. Reine Angew. Math. 520 (2000), 37–93. With an appendix by Frank Lübeck. MR 1748271, DOI 10.1515/crll.2000.023
- Mark Reeder, Whittaker models and unipotent representations of $p$-adic groups, Math. Ann. 308 (1997), no. 4, 587–592. MR 1464911, DOI 10.1007/s002080050091
- T. Shoji, On the Green polynomials of classical groups, Invent. Math. 74 (1983), no. 2, 239–267. MR 723216, DOI 10.1007/BF01394315
- Toshiaki Shoji, On the Green polynomials of a Chevalley group of type $F_{4}$, Comm. Algebra 10 (1982), no. 5, 505–543. MR 647835, DOI 10.1080/00927878208822732
- N. Spaltenstein, On the generalized Springer correspondence for exceptional groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 317–338. MR 803340, DOI 10.2969/aspm/00610317
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610, DOI 10.1007/BFb0096302
- T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279–293. MR 491988, DOI 10.1007/BF01403165
- T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207. MR 442103, DOI 10.1007/BF01390009
- Marko Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 335–382. MR 870688, DOI 10.24033/asens.1510
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588
- David A. Vogan Jr., Unitarizability of certain series of representations, Ann. of Math. (2) 120 (1984), no. 1, 141–187. MR 750719, DOI 10.2307/2007074
- David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR 632407
Bibliographic Information
- Dan Ciubotaru
- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
- MR Author ID: 754534
- Email: ciubo@math.utah.edu
- Received by editor(s): January 31, 2007
- Published electronically: December 15, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 12 (2008), 453-498
- MSC (2000): Primary 22E50
- DOI: https://doi.org/10.1090/S1088-4165-08-00338-5
- MathSciNet review: 2465803