Harish-Chandra bimodules for quantized Slodowy slices
HTML articles powered by AMS MathViewer
- by Victor Ginzburg PDF
- Represent. Theory 13 (2009), 236-271 Request permission
Abstract:
The Slodowy slice is an especially nice slice to a given nilpotent conjugacy class in a semisimple Lie algebra. Premet introduced noncommutative quantizations of the Poisson algebra of polynomial functions on the Slodowy slice.
In this paper, we define and study Harish-Chandra bimodules over Premet’s algebras. We apply the technique of Harish-Chandra bimodules to prove a conjecture of Premet concerning primitive ideals, to define projective functors, and to construct “noncommutative resolutions” of Slodowy slices via translation functors.
References
- Maria Jesus Asensio, Michel Van den Bergh, and Freddy Van Oystaeyen, A new algebraic approach to microlocalization of filtered rings, Trans. Amer. Math. Soc. 316 (1989), no. 2, 537–553. MR 958890, DOI 10.1090/S0002-9947-1989-0958890-X
- Alexandre Beĭlinson and Joseph Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825
- Alexander Beilinson and Victor Ginzburg, Wall-crossing functors and $\scr D$-modules, Represent. Theory 3 (1999), 1–31. MR 1659527, DOI 10.1090/S1088-4165-99-00063-1
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- Jan-Erik Björk, The Auslander condition on Noetherian rings, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988) Lecture Notes in Math., vol. 1404, Springer, Berlin, 1989, pp. 137–173. MR 1035224, DOI 10.1007/BFb0084075
- Walter Borho and Jean-Luc Brylinski, Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules, Invent. Math. 69 (1982), no. 3, 437–476. MR 679767, DOI 10.1007/BF01389364
- Walter Borho and Hanspeter Kraft, Über die Gelfand-Kirillov-Dimension, Math. Ann. 220 (1976), no. 1, 1–24. MR 412240, DOI 10.1007/BF01354525
- Mitya Boyarchenko, Quantization of minimal resolutions of Kleinian singularities, Adv. Math. 211 (2007), no. 1, 244–265. MR 2313534, DOI 10.1016/j.aim.2006.08.003
- Bram Broer, Line bundles on the cotangent bundle of the flag variety, Invent. Math. 113 (1993), no. 1, 1–20. MR 1223221, DOI 10.1007/BF01244299
- Jonathan Brundan and Alexander Kleshchev, Shifted Yangians and finite $W$-algebras, Adv. Math. 200 (2006), no. 1, 136–195. MR 2199632, DOI 10.1016/j.aim.2004.11.004
- Jonathan Brundan and Alexander Kleshchev, Representations of shifted Yangians and finite $W$-algebras, Mem. Amer. Math. Soc. 196 (2008), no. 918, viii+107. MR 2456464, DOI 10.1090/memo/0918
- Jonathan Brundan, Simon M. Goodwin, and Alexander Kleshchev, Highest weight theory for finite $W$-algebras, Int. Math. Res. Not. IMRN 15 (2008), Art. ID rnn051, 53. MR 2438067, DOI 10.1093/imrn/rnn051
- William Crawley-Boevey and Martin P. Holland, Noncommutative deformations of Kleinian singularities, Duke Math. J. 92 (1998), no. 3, 605–635. MR 1620538, DOI 10.1215/S0012-7094-98-09218-3
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Ofer Gabber, The integrability of the characteristic variety, Amer. J. Math. 103 (1981), no. 3, 445–468. MR 618321, DOI 10.2307/2374101
- Wee Liang Gan and Victor Ginzburg, Quantization of Slodowy slices, Int. Math. Res. Not. 5 (2002), 243–255. MR 1876934, DOI 10.1155/S107379280210609X
- I. Gordon and J. T. Stafford, Rational Cherednik algebras and Hilbert schemes, Adv. Math. 198 (2005), no. 1, 222–274. MR 2183255, DOI 10.1016/j.aim.2004.12.005
- V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), no. 3, 491–513. MR 664117, DOI 10.1007/BF01398933
- Timothy J. Hodges, Noncommutative deformations of type-$A$ Kleinian singularities, J. Algebra 161 (1993), no. 2, 271–290. MR 1247356, DOI 10.1006/jabr.1993.1219
- Martin P. Holland, Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 6, 813–834 (English, with English and French summaries). MR 1717577, DOI 10.1016/S0012-9593(00)87719-8
- Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, $D$-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR 2357361, DOI 10.1007/978-0-8176-4523-6
- Masaki Kashiwara, $D$-modules and microlocal calculus, Translations of Mathematical Monographs, vol. 217, American Mathematical Society, Providence, RI, 2003. Translated from the 2000 Japanese original by Mutsumi Saito; Iwanami Series in Modern Mathematics. MR 1943036, DOI 10.1090/mmono/217
- Masaki Kashiwara and Takahiro Kawai, On holonomic systems of microdifferential equations. III. Systems with regular singularities, Publ. Res. Inst. Math. Sci. 17 (1981), no. 3, 813–979. MR 650216, DOI 10.2977/prims/1195184396
- N. Kawanaka, Generalized Gel′fand-Graev representations and Ennola duality, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 175–206. MR 803335, DOI 10.2969/aspm/00610175
- Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101–184. MR 507800, DOI 10.1007/BF01390249
- I. Losev, Quantized symplectic actions and W-algebras. Preprint 2007, arXiv:0707.3108.
- —, Finite dimensional representations of $W$-algebras, Preprint 2008. arXiv:0807.1023.
- Hisayosi Matumoto, Whittaker vectors and associated varieties, Invent. Math. 89 (1987), no. 1, 219–224. MR 892192, DOI 10.1007/BF01404678
- Colette Mœglin, Modèles de Whittaker et idéaux primitifs complètement premiers dans les algèbres enveloppantes, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 17, 845–848 (French, with English summary). MR 870903
- Ian M. Musson, Hilbert schemes and noncommutative deformations of type A Kleinian singularities, J. Algebra 293 (2005), no. 1, 102–129. MR 2173968, DOI 10.1016/j.jalgebra.2005.07.021
- Alexander Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), no. 1, 1–55. With an appendix by Serge Skryabin. MR 1929302, DOI 10.1006/aima.2001.2063
- Alexander Premet, Enveloping algebras of Slodowy slices and the Joseph ideal, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 3, 487–543. MR 2314105, DOI 10.4171/JEMS/86
- Alexander Premet, Primitive ideals, non-restricted representations and finite $W$-algebras, Mosc. Math. J. 7 (2007), no. 4, 743–762, 768 (English, with English and Russian summaries). MR 2372212, DOI 10.17323/1609-4514-2007-7-4-743-762
- —, Commutative quotients of finite W-algebras., Preprint 2008. arXiv:0809.0663.
- S. Skryabin, The category equivalence, Appendix to \cite{premet}.
- Peter Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, vol. 815, Springer, Berlin, 1980. MR 584445, DOI 10.1007/BFb0090294
- Nicolas Spaltenstein, On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology 16 (1977), no. 2, 203–204. MR 447423, DOI 10.1016/0040-9383(77)90022-2
Additional Information
- Victor Ginzburg
- Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- Email: ginzburg@math.uchicago.edu
- Received by editor(s): November 10, 2008
- Received by editor(s) in revised form: March 31, 2009
- Published electronically: June 30, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 13 (2009), 236-271
- MSC (2000): Primary 81R10
- DOI: https://doi.org/10.1090/S1088-4165-09-00355-0
- MathSciNet review: 2515934
Dedicated: Dedicated to the memory of Peter Slodowy