The blocks of the Brauer algebra in characteristic zero
HTML articles powered by AMS MathViewer
- by Anton Cox, Maud De Visscher and Paul Martin PDF
- Represent. Theory 13 (2009), 272-308 Request permission
Abstract:
We determine the blocks of the Brauer algebra in characteristic zero. We also give information on the submodule structure of standard modules for this algebra.References
- Richard Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. (2) 38 (1937), no. 4, 857–872. MR 1503378, DOI 10.2307/1968843
- Wm. P. Brown, An algebra related to the orthogonal group, Michigan Math. J. 3 (1955), 1–22. MR 72122
- A. G. Cox, M. De Visscher, and P. P. Martin, A geometric characterisation of the blocks of the Brauer algebra, J. London Math. Soc, to appear.
- Anton Cox, Paul Martin, Alison Parker, and Changchang Xi, Representation theory of towers of recollement: theory, notes, and examples, J. Algebra 302 (2006), no. 1, 340–360. MR 2236606, DOI 10.1016/j.jalgebra.2006.01.009
- Richard Dipper, Stephen Doty, and Jun Hu, Brauer algebras, symplectic Schur algebras and Schur-Weyl duality, Trans. Amer. Math. Soc. 360 (2008), no. 1, 189–213. MR 2342000, DOI 10.1090/S0002-9947-07-04179-7
- S. Doty, and J. Hu, Schur-Weyl duality for orthogonal groups, Proc. London Math. Soc., 98 (2009), 679–713.
- Persi Diaconis, Group representations in probability and statistics, Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 11, Institute of Mathematical Statistics, Hayward, CA, 1988. MR 964069, DOI 10.1007/BFb0086177
- S. Donkin, The $q$-Schur algebra, London Mathematical Society Lecture Note Series, vol. 253, Cambridge University Press, Cambridge, 1998. MR 1707336, DOI 10.1017/CBO9780511600708
- Stephen Doty, Polynomial representations, algebraic monoids, and Schur algebras of classical type, J. Pure Appl. Algebra 123 (1998), no. 1-3, 165–199. MR 1492900, DOI 10.1016/S0022-4049(96)00082-5
- S. Donkin and R. Tange, The Brauer algebra and the symplectic Schur algebra, Math. Z., to appear.
- William F. Doran IV, David B. Wales, and Philip J. Hanlon, On the semisimplicity of the Brauer centralizer algebras, J. Algebra 211 (1999), no. 2, 647–685. MR 1666664, DOI 10.1006/jabr.1998.7592
- William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI 10.1007/BF01232365
- James A. Green, Polynomial representations of $\textrm {GL}_{n}$, Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin-New York, 1980. MR 606556, DOI 10.1007/BFb0092296
- Robert Hartmann and Rowena Paget, Young modules and filtration multiplicities for Brauer algebras, Math. Z. 254 (2006), no. 2, 333–357. MR 2262706, DOI 10.1007/s00209-006-0950-x
- Phil Hanlon and David Wales, Eigenvalues connected with Brauer’s centralizer algebras, J. Algebra 121 (1989), no. 2, 446–476. MR 992776, DOI 10.1016/0021-8693(89)90077-X
- Phil Hanlon and David Wales, On the decomposition of Brauer’s centralizer algebras, J. Algebra 121 (1989), no. 2, 409–445. MR 992775, DOI 10.1016/0021-8693(89)90076-8
- Phil Hanlon and David Wales, Computing the discriminants of Brauer’s centralizer algebras, Math. Comp. 54 (1990), no. 190, 771–796. MR 1010599, DOI 10.1090/S0025-5718-1990-1010599-4
- Phil Hanlon and David Wales, A tower construction for the radical in Brauer’s centralizer algebras, J. Algebra 164 (1994), no. 3, 773–830. MR 1272114, DOI 10.1006/jabr.1994.1089
- G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR 513828, DOI 10.1007/BFb0067708
- G. D. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley, 1981.
- Steffen König and Changchang Xi, Cellular algebras: inflations and Morita equivalences, J. London Math. Soc. (2) 60 (1999), no. 3, 700–722. MR 1753809, DOI 10.1112/S0024610799008212
- Steffen König and Changchang Xi, A characteristic free approach to Brauer algebras, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1489–1505. MR 1806731, DOI 10.1090/S0002-9947-00-02724-0
- Paul Martin, Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, vol. 5, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991. MR 1103994, DOI 10.1142/0983
- Paul Martin, The structure of the partition algebras, J. Algebra 183 (1996), no. 2, 319–358. MR 1399030, DOI 10.1006/jabr.1996.0223
- Andrew Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, University Lecture Series, vol. 15, American Mathematical Society, Providence, RI, 1999. MR 1711316, DOI 10.1090/ulect/015
- P. P. Martin and S. Ryom-Hansen, Virtual algebraic Lie theory: tilting modules and Ringel duals for blob algebras, Proc. London Math. Soc. (3) 89 (2004), no. 3, 655–675. MR 2107010, DOI 10.1112/S0024611504014789
- Paul P. Martin and David Woodcock, Generalized blob algebras and alcove geometry, LMS J. Comput. Math. 6 (2003), 249–296. MR 2051586, DOI 10.1112/S1461157000000450
- Maxim Nazarov, Young’s orthogonal form for Brauer’s centralizer algebra, J. Algebra 182 (1996), no. 3, 664–693. MR 1398116, DOI 10.1006/jabr.1996.0195
- Sebastian Oehms, Centralizer coalgebras, FRT-construction, and symplectic monoids, J. Algebra 244 (2001), no. 1, 19–44. MR 1856529, DOI 10.1006/jabr.2001.8909
- Rosa Orellana and Arun Ram, Affine braids, Markov traces and the category $\scr O$, Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math., vol. 19, Tata Inst. Fund. Res., Mumbai, 2007, pp. 423–473. MR 2348913
- Hebing Rui, A criterion on the semisimple Brauer algebras, J. Combin. Theory Ser. A 111 (2005), no. 1, 78–88. MR 2144855, DOI 10.1016/j.jcta.2004.11.009
- Hans Wenzl, On the structure of Brauer’s centralizer algebras, Ann. of Math. (2) 128 (1988), no. 1, 173–193. MR 951511, DOI 10.2307/1971466
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
Additional Information
- Anton Cox
- Affiliation: Centre for Mathematical Science, City University, Northampton Square, London, EC1V 0HB, England.
- Email: A.G.Cox@city.ac.uk
- Maud De Visscher
- Affiliation: Centre for Mathematical Science, City University, Northampton Square, London, EC1V 0HB, England
- MR Author ID: 703480
- Email: M.Devisscher@city.ac.uk
- Paul Martin
- Affiliation: Centre for Mathematical Science, City University, Northampton Square, London, EC1V 0HB, England
- Address at time of publication: Department of Pure Mathematics, University at Leeds, Leeds, LS2 9JT, England
- MR Author ID: 120490
- Email: ppmartin@maths.leeds.ac.uk
- Received by editor(s): December 22, 2005
- Published electronically: July 7, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 13 (2009), 272-308
- MSC (2000): Primary 20G05
- DOI: https://doi.org/10.1090/S1088-4165-09-00305-7
- MathSciNet review: 2550471