Unitary representations of rational Cherednik algebras
HTML articles powered by AMS MathViewer
- by Pavel Etingof and Emanuel Stoica; with an appendix by Stephen Griffeth
- Represent. Theory 13 (2009), 349-370
- DOI: https://doi.org/10.1090/S1088-4165-09-00356-2
- Published electronically: August 18, 2009
- PDF | Request permission
Abstract:
We study unitarity of lowest weight irreducible representations of rational Cherednik algebras. We prove several general results, and use them to determine which lowest weight representations are unitary in a number of cases.
In particular, in type A, we give a full description of the unitarity locus (justified in Subsection 5.1 and the appendix written by S. Griffeth), and resolve a question by Cherednik on the unitarity of the irreducible subrepresentation of the polynomial representation. Also, as a by-product, we establish Kasatani’s conjecture in full generality (the previous proof by Enomoto assumes that the parameter $c$ is not a half-integer).
References
- Roman Bezrukavnikov, Pavel Etingof, Parabolic induction and restriction functors for rational Cherednik algebras, arXiv:0803.3639.
- Yuri Berest, Pavel Etingof, and Victor Ginzburg, Finite-dimensional representations of rational Cherednik algebras, Int. Math. Res. Not. 19 (2003), 1053–1088. MR 1961261, DOI 10.1155/S1073792803210205
- D. Calaque, B. Enriquez, P. Etingof, Universal KZB equations I: the elliptic case, arXiv:math/0702670.
- I. Cherednik, Towards harmonic analysis for DAHA: integral formulas for canonical traces, talk, www-math.mit.edu/˜etingof/hadaha.pdf.
- I. Cherednik, Non-semisimple Macdonald polynomials, arXiv:0709.1742.
- Ivan Cherednik, Double affine Hecke algebras, London Mathematical Society Lecture Note Series, vol. 319, Cambridge University Press, Cambridge, 2005. MR 2133033, DOI 10.1017/CBO9780511546501
- Tatyana Chmutova, Representations of the rational Cherednik algebras of dihedral type, J. Algebra 297 (2006), no. 2, 542–565. MR 2209274, DOI 10.1016/j.jalgebra.2005.12.024
- Richard Dipper and Gordon James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), no. 1, 20–52. MR 812444, DOI 10.1112/plms/s3-52.1.20
- Richard Dipper and Gordon James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 54 (1987), no. 1, 57–82. MR 872250, DOI 10.1112/plms/s3-54.1.57
- C. F. Dunkl, M. F. E. de Jeu, and E. M. Opdam, Singular polynomials for finite reflection groups, Trans. Amer. Math. Soc. 346 (1994), no. 1, 237–256. MR 1273532, DOI 10.1090/S0002-9947-1994-1273532-6
- Charles F. Dunkl, Singular polynomials and modules for the symmetric groups, Int. Math. Res. Not. 39 (2005), 2409–2436. MR 2181357, DOI 10.1155/IMRN.2005.2409
- Charles F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213–1227. MR 1145585, DOI 10.4153/CJM-1991-069-8
- Pavel Etingof and Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348. MR 1881922, DOI 10.1007/s002220100171
- Pavel Etingof, Calogero-Moser systems and representation theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2007. MR 2296754, DOI 10.4171/034
- N. Enomoto, Composition factors of polynomial representation of DAHA and crystallized decomposition numbers, math.RT/0604369.
- B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials, Int. Math. Res. Not. 18 (2003), 1015–1034. MR 1962014, DOI 10.1155/S1073792803209119
- S. Griffeth, Towards a combinatorial representation theory for the rational Cherednik algebra of type $G(r,p,n)$., to appear in Proceedings of the Edinburgh Mathematical Society. arXiv:math/0612733
- S. Griffeth, Orthogonal functions generalizing Jack polynomials, arXiv:0707.0251
- Victor Ginzburg, Nicolas Guay, Eric Opdam, and Raphaël Rouquier, On the category $\scr O$ for rational Cherednik algebras, Invent. Math. 154 (2003), no. 3, 617–651. MR 2018786, DOI 10.1007/s00222-003-0313-8
- Masahiro Kasatani, Subrepresentations in the polynomial representation of the double affine Hecke algebra of type $\textrm {GL}_n$ at $t^{k+1}q^{r-1}=1$, Int. Math. Res. Not. 28 (2005), 1717–1742. MR 2172339, DOI 10.1155/IMRN.2005.1717
- E. M. Opdam, Some applications of hypergeometric shift operators, Invent. Math. 98 (1989), no. 1, 1–18. MR 1010152, DOI 10.1007/BF01388841
- T. Suzuki, Cylindrical Combinatorics and Representations of Cherednik Algebras of type A, arXiv:math/0610029.
Bibliographic Information
- Pavel Etingof
- Affiliation: Department of Mathematics, Room 2-176, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- MR Author ID: 289118
- Email: etingof@math.mit.edu
- Emanuel Stoica
- Affiliation: Department of Mathematics, Room 2-089, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- Email: immanuel@math.mit.edu
- Stephen Griffeth
- Affiliation: School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St. S.E., Minneapolis, Minnesota 55455
- Email: griffeth@math.umn.edu
- Received by editor(s): May 5, 2009
- Received by editor(s) in revised form: June 12, 2009
- Published electronically: August 18, 2009
- © Copyright 2009 American Mathematical Society
- Journal: Represent. Theory 13 (2009), 349-370
- MSC (2000): Primary 16S99
- DOI: https://doi.org/10.1090/S1088-4165-09-00356-2
- MathSciNet review: 2534594