Nilpotent orbits in classical Lie algebras over finite fields of characteristic 2 and the Springer correspondence
HTML articles powered by AMS MathViewer
- by Ting Xue PDF
- Represent. Theory 13 (2009), 371-390 Request permission
Abstract:
Let $G$ be an adjoint algebraic group of type $B$, $C$, or $D$ over an algebraically closed field of characteristic 2. We construct a Springer correspondence for the Lie algebra of $G$. In particular, for orthogonal Lie algebras in characteristic 2, the structure of component groups of nilpotent centralizers is determined and the number of nilpotent orbits over finite fields is obtained.References
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Wim H. Hesselink, Nilpotency in classical groups over a field of characteristic $2$, Math. Z. 166 (1979), no. 2, 165–181. MR 525621, DOI 10.1007/BF01214043
- S. Kato, On the geometry of exotic nilpotent cones. (2006) arxiv: 0607478v1.
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- G. Lusztig, Character sheaves on disconnected groups. II, Represent. Theory 8 (2004), 72–124. MR 2048588, DOI 10.1090/S1088-4165-04-00238-9
- George Lusztig, Character sheaves. II, III, Adv. in Math. 57 (1985), no. 3, 226–265, 266–315. MR 806210, DOI 10.1016/0001-8708(85)90064-7
- G. Lusztig, A class of irreducible representations of a Weyl group, Nederl. Akad. Wetensch. Indag. Math. 41 (1979), no. 3, 323–335. MR 546372, DOI 10.1016/1385-7258(79)90036-2
- G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for classical groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 289–316. MR 803339, DOI 10.2969/aspm/00610289
- Nicolas Spaltenstein, Nilpotent classes and sheets of Lie algebras in bad characteristic, Math. Z. 181 (1982), no. 1, 31–48. MR 671712, DOI 10.1007/BF01214979
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610, DOI 10.1007/BFb0096302
- N. Spaltenstein, Nilpotent classes in Lie algebras of type $F_{4}$ over fields of characteristic $2$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), no. 3, 517–524. MR 731515
- T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207. MR 442103, DOI 10.1007/BF01390009
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713, DOI 10.1007/978-0-8176-4840-4
- Robert Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Mathematics, Vol. 366, Springer-Verlag, Berlin-New York, 1974. Notes by Vinay V. Deodhar. MR 0352279, DOI 10.1007/BFb0067854
- Robert Steinberg, On the desingularization of the unipotent variety, Invent. Math. 36 (1976), 209–224. MR 430094, DOI 10.1007/BF01390010
- Ting Xue, Nilpotent orbits in classical Lie algebras over $\textbf {F}_{2^n}$ and the Springer correspondence, Proc. Natl. Acad. Sci. USA 105 (2008), no. 4, 1126–1128. MR 2375447, DOI 10.1073/pnas.0709626104
Additional Information
- Ting Xue
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: txue@math.mit.edu
- Received by editor(s): December 31, 2008
- Received by editor(s) in revised form: June 27, 2009
- Published electronically: September 3, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 13 (2009), 371-390
- MSC (2000): Primary 14L35; Secondary 17B10
- DOI: https://doi.org/10.1090/S1088-4165-09-00357-4
- MathSciNet review: 2540701