REPRESENTATION THEORY An Electronic Journal of the American Mathematical Society Volume 13, Pages 391–400 (September 3, 2009) S 1088-4165(09)00358-6

REMARKS ON SPRINGER'S REPRESENTATIONS

G. LUSZTIG

ABSTRACT. We give an explicit description of a set of irreducible representations of a Weyl group which parametrizes the nilpotent orbits in the Lie algebra of a connected reductive group in arbitrary characteristic. We also answer a question of Serre concerning the conjugacy class of a power of a unipotent element in a connected reductive group.

INTRODUCTION

0.1. Let **k** be an algebraically closed field of characteristic exponent p > 1. Let G be a connected reductive algebraic group over \mathbf{k} and let \mathfrak{g} be the Lie algebra of G. Let \mathcal{U}_G be the variety of unipotent elements of G and let $\mathcal{N}_{\mathfrak{g}}$ be the variety of nilpotent elements of \mathfrak{g} (we say that $x \in \mathfrak{g}$ is nilpotent if for some/any closed imbedding $G \subset GL(\mathbf{k}^n)$, the image of x under the induced map of Lie algebras $\mathfrak{g} \to \operatorname{End}(\mathbf{k}^n)$ is nilpotent as an endomorphism). Note that G acts on G and \mathfrak{g} by the adjoint action. Let \mathcal{X}_G (resp. $\mathcal{X}_{\mathfrak{g}}$) be the set of G-orbits on \mathcal{U}_G (resp. on $\mathcal{N}_{\mathfrak{g}}$). We fix a prime number $l, l \neq p$. Let $\hat{\mathcal{X}}_G$ (resp. $\hat{\mathcal{X}}_{\mathfrak{g}}$) be the set of pairs $(\mathcal{O}, \mathcal{L})$ where $\mathcal{O} \in \mathcal{X}_G$ (resp. $\mathcal{O} \in \mathcal{X}_{\mathfrak{g}}$) and \mathcal{L} is an irreducible *G*-equivariant $\overline{\mathbf{Q}}_l$ -local system on \mathcal{O} up to isomorphism. Let **W** be the Weyl group of G. For any Weyl group W let Irr(W) be the set of isomorphism classes of irreducible representations of W over **Q.** In [Sp], Springer defined (assuming that p = 1 or $p \gg 0$) natural injective maps $S_G : \operatorname{Irr}(\mathbf{W}) \to \hat{\mathcal{X}}_G, \, S_{\mathfrak{g}} : \operatorname{Irr}(\mathbf{W}) \to \hat{\mathcal{X}}_{\mathfrak{g}}$ (each of these two maps determines the other since in this case we have canonically $\hat{\mathcal{X}}_G = \hat{\mathcal{X}}_g$). In [L2] a new definition of the map S_G (based on intersection homology) was given which applies without restriction on p. A similar method can be used to define $S_{\mathfrak{g}}$ without restriction on p (see [X1], [X2] and 2.2 below); note that in general $\hat{\mathcal{X}}_G, \hat{\mathcal{X}}_{\mathfrak{g}}$ cannot be identified. Now for any $\mathcal{O} \in \mathcal{X}_G$ (resp. $\mathcal{O} \in \mathcal{X}_g$), $(\mathcal{O}, \mathbf{Q}_l)$ is in the image of S_G (resp. S_g); hence there is a well-defined injective map $S'_G : \mathcal{X}_G \to \operatorname{Irr}(\mathbf{W})$ (resp. $S'_{\mathfrak{g}} : \mathcal{X}_{\mathfrak{g}} \to \operatorname{Irr}(\mathbf{W})$) such that for any $\mathcal{O} \in \mathcal{X}_G$ (resp. $\mathcal{O} \in \mathcal{X}_g$) we have $S'_G(\mathcal{O}) = E$ (resp. $S'_g(\mathcal{O}) = E$) where $E \in \operatorname{Irr}(\mathbf{W})$ is given by $S_G(E) = (\mathcal{O}, \overline{\mathbf{Q}}_l)$ (resp. $S_{\mathfrak{g}}(E) = (\mathcal{O}, \overline{\mathbf{Q}}_l)$). Let \mathfrak{S}_G be the image of $S'_G : \mathcal{X}_G \to \operatorname{Irr}(\mathbf{W})$. Let $\mathfrak{S}_{\mathfrak{g}}$ be the image of $S'_{\mathfrak{g}} : \mathcal{X}_{\mathfrak{g}} \to \operatorname{Irr}(\mathbf{W})$.

In [L5], we gave an a priori definition (in the framework of Weyl groups) of the subset \mathfrak{S}_G of $\operatorname{Irr}(\mathbf{W})$ which parametrizes the unipotent *G*-orbits in *G*. In this paper we give an a priori definition (in a similar spirit) of the subset $\mathfrak{S}_{\mathfrak{g}}$ of $\operatorname{Irr}(\mathbf{W})$ which parametrizes the nilpotent *G*-orbits in \mathfrak{g} . (See Proposition 3.2.) This relies heavily on work of Spaltenstein [S2], [S3] and on [HS]. As an application we define a

Received by the editors May 5, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 20G99.

Supported in part by the National Science Foundation.

^{©2009} American Mathematical Society Reverts to public domain 28 years from publication

natural injective map from the set of unipotent G-orbits in G to the set of nilpotent G-orbits in \mathfrak{g} (see 3.3); this map preserves the dimension of an orbit.

In [Se], Serre asked whether a power u^n (where n is an integer not divisible by p, $p \geq 2$) of a unipotent element $u \in G$ is conjugate to u under G. This is well known to be true when $p \gg 0$. In §2 we answer positively this question in general using the theory of Springer's representations; we also discuss an analogous property of nilpotent elements.

1. Combinatorics

1.1. For $k \in \mathbf{N}$ let $\mathcal{E}_k = \{a_* = (a_0, a_1, \dots, a_k) \in \mathbf{N}^{k+1}; a_0 \leq a_1 \leq \dots \leq a_k\}$. For $a_* \in \mathcal{E}_k$ let $|a_*| = \sum_i a_i$. For $a_*, a'_* \in \mathcal{E}_k$ we set $a_* + a'_* = (a_0 + a'_0, a_1 + a'_1, \dots, a_k + a'_k)$. For any $n \in \mathbf{N}$ let $\mathcal{E}_k^n = \{a_* \in \mathcal{E}_k; |a_*| = n\}$. We have an imbedding $\mathcal{E}_k^n \to \mathcal{E}_{k+1}^n$, $(a_0, a_1, \ldots, a_k) \mapsto (0, a_0, a_1, \ldots, a_k)$. This is a bijection if k is sufficiently large with respect to n. For $n \in \mathbf{N}$ let

$$\mathcal{C}_k^n = \{ (a_*, a'_*) \in \mathcal{E}_k \times \mathcal{E}_k; |a_*| + |a'_*| = n \}, \\ \mathcal{D}_k^n = \{ (a_*, a'_*) \in \mathcal{C}_k^n; \text{ either } |a_*| > |a'_*| \text{ or } a_* = a'_* \}$$

Here k is large (relative to n), fixed. Let

$${}^{b}\mathcal{C}_{k}^{n} = \{(a_{*}, a_{*}') \in \mathcal{C}_{k}^{n}; a_{i}' \leq a_{i} + 2 \quad \forall i \in [0, k]\},$$

$${}^{b1}\mathcal{C}_{k}^{n} = \{(a_{*}, a_{*}') \in \mathcal{C}_{k}^{n}; a_{i}' \leq a_{i} + 2 \quad \forall i \in [0, k], a_{i} \leq a_{i+1}' \quad \forall i \in [0, k-1]\},$$

$${}^{b2}\mathcal{C}_{k}^{n} = \{(a_{*}, a_{*}') \in \mathcal{C}_{k}^{n}; a_{i}' \leq a_{i} + 2 \quad \forall i \in [0, k], a_{i} \leq a_{i+1}' + 2 \quad \forall i \in [0, k-1]\},$$

$${}^{c1}\mathcal{C}_{k}^{n} = \{(a_{*}, a_{*}') \in \mathcal{C}_{k}^{n}; a_{i} \leq a_{i+1}' + 1 \quad \forall i \in [0, k-1], a_{i}' \leq a_{i} + 1 \quad \forall i \in [0, k]\},$$

$${}^{d1}\mathcal{D}_{k}^{n} = \{(a_{*}, a_{*}') \in \mathcal{D}_{k}^{n}; a_{i}' \leq a_{i} \quad \forall i \in [0, k], a_{i} \leq a_{i+1}' + 2 \quad \forall i \in [0, k-1]\},$$

$${}^{d2}\mathcal{D}_{k}^{n} = \{(a_{*}, a_{*}') \in \mathcal{D}_{k}^{n}; a_{i}' \leq a_{i} \quad \forall i \in [0, k], a_{i} \leq a_{i+1}' + 2 \quad \forall i \in [0, k-1]\},$$

Note that

$${}^{b1}\mathcal{C}_{k}^{n} \subset {}^{b2}\mathcal{C}_{k}^{n} \subset {}^{b}\mathcal{C}_{k}^{n},$$
$${}^{c1}\mathcal{C}_{k}^{n} \subset {}^{b2}\mathcal{C}_{k}^{n} \subset \mathcal{C}_{k}^{n},$$
$${}^{d1}\mathcal{D}_{k}^{n} \subset {}^{d2}\mathcal{D}_{k}^{n} \subset {}^{d}\mathcal{D}_{k}^{n}.$$

The following statements are obvious. If $(a_*, a'_*) \in \mathcal{C}_k^m$, $(b_*, b'_*) \in \mathcal{C}_k^{m'}$, then $(a_* + a_*) \in \mathcal{C}_k^{m'}$ $\begin{array}{l} b_{k},a_{k}'+b_{k}') \in \mathcal{C}_{k}^{m+m'}. \text{ If } (a_{*},a_{*}') \in {}^{b}\mathcal{C}_{k}^{m}, (b_{*},b_{*}') \in {}^{d}\mathcal{D}_{k}^{m'}, \text{ then } (a_{*}+b_{*},a_{*}'+b_{*}') \in {}^{b}\mathcal{C}_{k}^{m+m'}. \text{ If } (a_{*},a_{*}') \in {}^{d}\mathcal{D}_{k}^{m'}, \text{ then } (a_{*}+b_{*},a_{*}'+b_{*}') \in {}^{d}\mathcal{C}_{k}^{m+m'}. \text{ If } (a_{*},a_{*}') \in {}^{d}\mathcal{D}_{k}^{m}, (b_{*},b_{*}') \in {}^{d}\mathcal{D}_{k}^{m'}, \text{ then } (a_{*}+b_{*},a_{*}'+b_{*}') \in {}^{d}\mathcal{C}_{k}^{m+m'}. \text{ In the following result we assume that } k \text{ is large relative to } n. \end{array}$

Proposition 1.2. (a) Let $(c_*, c'_*) \in \mathcal{C}^n_k$. Then either $(c_*, c'_*) \in {}^{c1}\mathcal{C}^n_k$ or there exist $m \ge 1, m' \ge 1$ such that m + m' = n and $(a_*, a'_*) \in \mathcal{C}^m_k$, $(b_*, b'_*) \in \mathcal{C}^{m'}_k$ such that

 $\begin{array}{l} (c_{*},c_{*}') = (a_{*} + b_{*},a_{*}' + b_{*}').\\ (b) \ Let \ (c_{*},c_{*}') \in {}^{b}\mathcal{C}_{k}^{n}. \ Then \ either \ (c_{*},c_{*}') \in {}^{b1}\mathcal{C}_{k}^{n} \ or \ there \ exist \ m \ge 0, m' \ge 2\\ such \ that \ m + m' = n \ and \ (a_{*},a_{*}') \in {}^{b}\mathcal{C}_{k}^{m}, \ (b_{*},b_{*}') \in {}^{d}\mathcal{D}_{k}^{m'}, \ such \ that \ (c_{*},c_{*}') = 0 \end{array}$ $(a_* + b_*, a'_* + b'_*).$

(c) Let $(c_*, c'_*) \in {}^d\mathcal{C}_k^n$. Then either $(c_*, c'_*) \in {}^{d_1}\mathcal{C}_k^n$ or there exist $m \ge 2, m' \ge 2$ such that m + m' = n and $(a_*, a'_*) \in {}^d\mathcal{D}_k^m$, $(b_*, b'_*) \in {}^d\mathcal{D}_k^{m'}$ such that $(c_*, c'_*) =$ $(a_* + b_*, a'_* + b'_*).$

We prove (a). Assume first that $c_s < c_{s+1}$ for some $s \in [0, k-1]$. Define $(b_*, b'_*) \in \mathcal{C}^k_r$, r = k - s > 0, by $b_i = 1$ for $i \in [s+1, k]$, $b_i = 0$ for $i \in [0, s]$, $b'_i = 0$ for $i \in [0, k]$. Define $(a_*, a'_*) \in \mathcal{C}^k_{n-r}$ by $a_i = c_i - 1$ for $i \in [s+1, k]$, $a_i = c_i$ in [0, s], $a'_* = c'_*$. We have $a_* + b_* = c_*$, $a'_* + b'_* = c'_*$. If r < n we see that (a) holds. If r = n, then $(c_*, c'_*) = (b_*, b'_*) \in {}^{c1}\mathcal{C}^k_n$ and (a) holds again.

Next we assume that $c'_s < c'_{s+1}$ for some $s \in [0, k-1]$. Define $(b_*, b'_*) \in \mathcal{C}_r^k$, r = k - s > 0, by $b_i = 0$ for $i \in [0, k]$, $b'_i = 1$ for $i \in [s + 1, k]$, $b'_i = 0$ for $i \in [0, s]$. Define $(a_*, a'_*) \in \mathcal{C}_{n-r}^k$ by $a_* = c_*, a'_i = c'_i - 1$ for $i \in [s + 1, k]$, $a'_i = c'_i$ for $i \in [0, s]$. We have $a_* + b_* = c_*, a'_* + b'_* = c'_*$. If r < n we see that (a) holds. If r = n, then $(c_*, c'_*) = (b_*, b'_*) \in {}^{c1}\mathcal{C}_k^n$ and (a) holds again.

Finally, we assume that $c_0 = c_1 = \cdots = c_r$, $c'_0 = c'_1 = \cdots = c'_r$. Since k is large we can assume that $c_0 = 0$, $c'_0 = 0$. Then n = 0 and $(c_*, c'_*) \in {}^{c_1}\mathcal{C}^n_k$.

We prove (b). If n = 0 we have clearly $(c_*, c'_*) \in {}^{b1}\mathcal{C}_k^n$. Hence we can assume that n > 0 and that the result is true when n is replaced by $n' \in [0, n-1]$.

Assume first that we can find $0 < t \le s \le k$ such that $c'_j = c_j + 2$ for $j \in [s+1,k]$, $c'_j < c_j + 2$ for $j \in [t,s]$, $c_{t-1} < c_t$. Note that if s < k, then $c'_s < c'_{s+1}$; indeed, $c'_s < c_s - 2 \le c_{s+1} - 2 = c'_{s+1}$. Define $(b_*, b'_*) \in {}^d \mathcal{D}^k_r$, r = 2k - t - s + 1 > 0 by $b_i = 1$ for $i \in [t,k]$, $b_i = 0$ for $i \in [0,t-1]$, $b'_i = 1$ for $i \in [s+1,k]$, $b'_i = 0$ for $i \in [0,s]$. Define $(a_*, a'_*) \in {}^b \mathcal{C}^k_{n-r}$ by $a_i = c_i - 1$ for $i \in [t,k]$, $a_i = c_i$ for $i \in [0,t-1]$, $a'_i = c'_i - 1$ for $i \in [s+1,k]$, $a'_i = c'_i$ for $i \in [0,s]$. We have $a_* + b_* = c_*, a'_* + b'_* = c'_*$. If $r \ge 2$, we see that (b) holds. If r = 1, then t = s = k and $a_k = c_k - 1$, $a_i = c_i$ for $i \in [0, k-1]$, $a'_i = c'_i$ for $i \in [0, k]$. The induction hypothesis is applicable to $(a_*, a'_*) \in {}^b \mathcal{C}^k_{n-1}$. If $(a_*, a'_*) \in {}^b \mathcal{C}^k_{n-1}$, then we can find $m \ge 0, m' \ge 2$ such that m + m' = n - 1 and $(\tilde{a}_*, \tilde{a}'_*) \in {}^b \mathcal{C}^k_k$, $(\tilde{b}_*, \tilde{b}'_*) \in {}^d \mathcal{D}^{m'}_k$ such that $(a_*, a'_*) = (\tilde{a}_* + \tilde{b}_*, \tilde{a}'_* + \tilde{b}'_*)$. Then $(c_*, c'_*) = (\tilde{a}_* + \tilde{b}_* + b_*, \tilde{a}'_* + \tilde{b}'_* + b'_*)$ where $(\tilde{a}_*, \tilde{a}'_*) \in {}^b \mathcal{C}^m_k$, $(\tilde{b}_* + b_*) \in {}^d \mathcal{D}^{m'+1}_k$ so that (b) holds.

Next we assume that $c_i > 0$ for some *i*. Then we have $0 = c_0 = c_1 = \cdots = c_{l-1} < c_l$ c_l for some $l \in [0,k]$. If $c'_s < c_s + 2$ for some $s \in [l,k]$, then we can assume that s is maximum possible with this property and there are two possibilities. Either $c'_i < c_i + 2$ for all $i \in [l, s]$ and then by the previous paragraph (with t = l) we see that (b) holds; or $c'_i = c_i + 2$ for some $i \in [l, s]$ and letting t - 1 be the largest such i we have $0 < t \le s$, $c'_j < c_j + 2$ for $j \in [t, s]$, $c'_j = c_j + 2$ for j = t - 1 and $c_{t-1} = c'_{t-1} - 2 \le c'_t - 2 < c_t$; using again the previous paragraph we see that (b) holds. Thus we may assume that $c'_i = c_i + 2$ for all $i \in [l, k]$. Assume, in addition, that $c'_s < c'_{s+1}$ for some $s \in [l, k-1]$. We can assume that s is maximum possible so that $c'_{s} < c'_{s+1} = \cdots = c'_{k}$. We have $c_{s+1} = c'_{s+1} - 2 > c'_{s} - 2 = c_{s}$; hence $c_s < c_{s+1}$. Define $(b_*, b'_*) \in {}^d \mathcal{D}_r^k$, $r = 2k - 2s \ge 2$, by $b_i = 1$ for $i \in [s+1, k]$, $b_i = 0$ for $i \in [0, s]$, $b'_i = 1$ for $i \in [s + 1, k]$, $b'_i = 0$ for $i \in [0, s]$. Define $(a_*, a'_*) \in {}^b \mathcal{C}^k_{n-r}$ by $a_i = c_i - 1$ for $i \in [s+1,k]$, $a_i = c_i$ for $i \in [0,s]$, $a'_i = c'_i - 1$ for $i \in [s+1,k]$, $a'_i = c'_i$ for $i \in [0, s]$. We have $a_* + b_* = c_*$, $a'_* + b'_* = c'_*$. We see that (b) holds. Thus we can assume that $c'_{l} = c'_{l+1} = \cdots = c'_{k} = N + 2$ so that $c_{l} = c_{l+1} = \cdots = c_{k} = N$. Note that $c'_i \leq 2$ for $i \in [0, l-1]$. We have $(c_*, c'_*) \in {}^{b1}\mathcal{C}^n_k$ so that (b) holds.

Finally, we assume that $c_0 = c_1 = \cdots = c_k = 0$. Then $c'_i \leq 2$ for $i \in [0, k]$ and $(c_*, c'_*) \in {}^{b_1}\mathcal{C}^n_k$ so that (b) holds. This completes the proof of (b).

We prove (c). If n = 0 we have clearly $(c_*, c'_*) \in {}^{d_1}\mathcal{D}_k^n$. Hence we can assume that n > 0 and that the result is true when n is replaced by $n' \in [0, n-1]$.

Assume first that we can find $0 < t \le s \le k$ such that $c'_j = c_j$ for $j \in [s+1, k]$, $c'_j < c_j$ for $j \in [t,s]$, $c_{t-1} < c_t$. Note that if s < k, then $c'_s < c'_{s+1}$; indeed, $c'_{s} < c_{s} \le c_{s+1} = c'_{s+1}$. Define $(b_{*}, b'_{*}) \in {}^{d}\mathcal{D}_{r}^{k}$, r = 2k - t - s + 1 > 0 by $b_{i} = 1$ for $i \in [t, k], b_i = 0$ for $i \in [0, t-1], b'_i = 1$ for $i \in [s+1, k], b'_i = 0$ for $i \in [0, s]$. Define $(a_*, a'_*) \in {}^d \mathcal{D}^k_{n-r}$ by $a_i = c_i - 1$ for $i \in [t, k], a_i = c_i$ for $i \in [0, t-1], a'_i = c'_i - 1$ for $i \in [s+1,k]$, $a'_i = c'_i$ for $i \in [0,s]$. We have $a_* + b_* = c_*$, $a'_* + b'_* = c'_*$. If $n-2 \ge r \ge 2$ we see that (c) holds. If r = 1, then t = s = k and $a_k = c_k - 1$, $a_i = c_i$ for $i \in [0, k-1]$, $a'_i = c'_i$ for $i \in [0, k]$. The induction hypothesis is applicable to $(a_*, a'_*) \in {}^d \mathcal{D}_{n-1}^k$. If $(a_*, a'_*) \in {}^{d_1} \mathcal{D}_{n-1}^k$, then clearly $(c_*, c'_*) \in {}^{d_1} \mathcal{D}_{n-1}^k$ and (c) holds. If $(a_*, a'_*) \notin {}^{d_1}\mathcal{D}^k_{n-1}$, then we can find $m \geq 2, m' \geq 2$ such that m + m' = n - 1and $(\tilde{a}_*, \tilde{a}'_*) \in {}^d\mathcal{D}_k^m, (\tilde{b}_*, \tilde{b}'_*) \in {}^d\mathcal{D}_k^{m'}$ such that $(a_*, a'_*) = (\tilde{a}_* + \tilde{b}_*, \tilde{a}'_* + \tilde{b}'_*)$. Then $(c_*, c'_*) = (\tilde{a}_* + \tilde{b}_* + b_*, \tilde{a}'_* + \tilde{b}'_* + b'_*) \text{ where } (\tilde{a}_*, \tilde{a}'_*) \in {}^d\mathcal{D}_k^m, (\tilde{b}_* + b_*, \tilde{b}'_* + b'_*) \in {}^d\mathcal{D}_k^{m'+1}$ so that (c) holds. If r = n - 1, then $a_i = 0$ for $i \in [0, k - 1]$, $a_k = 0$, $a'_i = 0$ for $i \in [0, k]$; hence $c_i = 1$ for $i \in [t, k - 1]$, $c_k = 2$, $c_i = 0$ for $i \in [0, t - 1]$, $c'_i = 1$ for $i \in [s+1,k], c'_i = 0$ for $i \in [0,s]$. Hence $(c_*,c'_*) \in {}^d\mathcal{D}^n_k$ so that (c) holds. If r = n, then $(c_*, c'_*) = (b_*, b'_*) \in {}^d\mathcal{D}_k^n$ so that (c) holds.

Next we assume that $c_i > 0$ for some *i*. Then we have $0 = c_0 = c_1 = \cdots = c_0$ $c_{l-1} < c_l$ for some $l \in [0, k]$. If $c'_s < c_s$ for some $s \in [l, k]$, then we can assume that s is maximum possible with this property and there are two possibilities. Either $c'_i < c_i$ for all $i \in [l, s]$ and then by the previous paragraph (with t = l) we see that (c) holds; or $c'_i = c_i$ for some $i \in [l, s]$ and letting t - 1 be the largest such i we have $0 < t \le s, c'_j < c_j$ for $j \in [t, s], c'_j = c_j$ for j = t - 1 and $c_{t-1} = c'_{t-1} \le c'_t < c_t$; using again the previous paragraph we see that (c) holds. Thus we may assume that $c'_i = c_i$ for all $i \in [l, k]$. Assume, in addition, that $c'_s < c'_{s+1}$ for some $s \in [l, k-1]$. We can assume that s is maximum possible so that $c'_s < c'_{s+1} = \cdots = c'_k$. We have $c_{s+1} = c'_{s+1} > c'_s = c_s$ hence $c_s < c_{s+1}$. Define $(b_*, b'_*) \in {}^d \mathcal{D}_r^k$, $r = 2k - 2s \ge 2$, by $b_i = 1$ for $i \in [s+1,k]$, $b_i = 0$ for $i \in [0,s]$, $b'_i = 1$ for $i \in [s+1,k]$, $b'_i = 0$ for $i \in [0, s]$. Define $(a_*, a'_*) \in {}^d \mathcal{D}^k_{n-r}$ by $a_i = c_i - 1$ for $i \in [s+1, k], a_i = c_i$ for $i \in [0, s], a'_i = c'_i - 1$ for $i \in [s + 1, k], a'_i = c'_i$ for $i \in [0, s]$. We have $a_* + b_* = c_*$, $a'_{*} + b'_{*} = c'_{*}$. If $r \leq n-2$, we see that (c) holds. If r = n-1, then $a_{i} = 0$ for $i \in [0, k-1], a_k = 0, a'_i = 0$ for $i \in [0, k]$; hence $c_i = 1$ for $i \in [s+1, k-1], c_k = 2$, $c_i = 0$ for $i \in [0, s], c'_i = 1$ for $i \in [s+1, k], c'_i = 0$ for $i \in [0, s]$. Hence $(c_*, c'_*) \in {}^d \mathcal{D}_k^n$ so that (c) holds. If r = n, then $(c_*, c'_*) = (b_*, b'_*) \in {}^d\mathcal{D}^n_k$ so that (c) holds. Thus we can assume that $c'_l = c'_{l+1} = \cdots = c'_k = N$ so that $c_l = c_{l+1} = \cdots = c_k = N$. Note that $c'_i = 0$ for $i \in [0, l-1]$. We have $(c_*, c'_*) \in {}^{d_1}\mathcal{D}^n_k$ so that (c) holds.

Finally, we assume that $c_0 = c_1 = \cdots = c_k = 0$. Then $c'_i = 0$ for $i \in [0, k]$. In this case we have n = 0 and $(c_*, c'_*) \in {}^{d_1}\mathcal{D}^n_k$ so that (c) holds. This completes the proof of (c).

2. On Serre's questions

2.1. For any affine algebraic group H over \mathbf{k} we denote by LieH the Lie algebra of H. For any $\mathcal{O} \in \mathcal{X}_G$ (or $\mathcal{O} \in \mathcal{X}_g$) we set $d_{\mathcal{O}} = 2 \dim \mathcal{B} - \dim \mathcal{O}$.

2.2. We recall the definition of Springer's representations following [L2]. Let \mathcal{B} be the variety of Borel subgroups of G. Let $\tilde{\mathcal{B}} = \{(g, B) \in G \times \mathcal{B}; g \in B\}$ and let $f : \tilde{\mathcal{B}} \to G$ be the first projection. Let $K = f_! \bar{\mathbf{Q}}_l$. In [L2] it was observed that K is an intersection cohomology complex on G coming from a local system on the open dense subset of G consisting on regular semisimple elements. Moreover, \mathbf{W}

acts naturally on this local system and hence, by "analytic continuation", on K. In particular, if $\mathcal{O} \in \mathcal{X}_G$ and $i \in \mathbb{Z}$, then \mathbb{W} acts naturally on the *i*-th cohomology sheaf $\mathcal{H}^i K|_{\mathcal{O}}$ of $K|_{\mathcal{O}}$, an irreducible G-equivariant local system on \mathcal{O} ; hence if \mathcal{L} is an irreducible G-equivariant local system on \mathcal{O} , then \mathbb{W} acts naturally on the $\bar{\mathbb{Q}}_l$ -vector space $\operatorname{Hom}(\mathcal{L}, \mathcal{H}^i K|_{\mathcal{O}})$. We denote this \mathbb{W} -module (with $i = d_{\mathcal{O}}$) by $V_{\mathcal{O},\mathcal{L}}$. As shown in [L4], $V_{\mathcal{O},\mathcal{L}}$ is either 0 or of the form $\bar{\mathbb{Q}}_l \otimes E$ where $E \in \operatorname{Irr}(\mathbb{W})$; moreover, any $E \in \operatorname{Irr}(\mathbb{W})$ arises in this way from a unique $(\mathcal{O}, \mathcal{L})$ and $E \mapsto (\mathcal{O}, \mathcal{L})$ is an injective map

$$S_G : \operatorname{Irr}(\mathbf{W}) \to \hat{\mathcal{X}}_G.$$

We would like to define a similar map from $Irr(\mathbf{W})$ to $\hat{\mathcal{X}}_{\mathfrak{g}}$. Let $\tilde{\mathcal{B}}' = \{(x, B) \in \mathcal{B}'\}$ $\mathfrak{g} \times \mathcal{B}; x \in \text{Lie}B$ and let $f' : \tilde{\mathcal{B}}' \to \mathfrak{g}$ be the first projection. Let $K' = f'_{l} \bar{\mathbf{Q}}_{l}$. Now if p is small the set of regular semisimple elements in g may be empty (this is the case for example if $G = SL_2(\mathbf{k}), p = 2$ so the method of [L4] cannot be used directly. However, T. Xue [X1], [X2] has observed that the method of [L4], [L2] can be applied if G is a classical group of adjoint type and p = 2 (in that case the set of regular semisimple elements in \mathfrak{g} is open dense in \mathfrak{g}). More generally, for any G which is adjoint, the set of regular semisimple elements in \mathfrak{g} is open dense in \mathfrak{g} . (Here is a proof. We must only check that if T is a maximal torus of G and $\mathfrak{t} = \text{Lie}T$, then the set \mathfrak{t}_{reg} of regular semisimple elements in \mathfrak{t} is open dense in \mathfrak{t} . Let $Y = \text{Hom}(\mathbf{k}^*, T)$. We have $\mathfrak{t} = \mathbf{k} \otimes Y$. Now \mathfrak{t}_{reg} is the set of all $x \in \mathfrak{t}$ such that for any root $\alpha : \mathfrak{t} \to \mathbf{k}$ we have $\alpha(x) \neq 0$. It is enough to show that any root $\alpha : \mathfrak{t} \to \mathbf{k}$ is $\neq 0$. We have $\alpha = 1 \otimes \alpha_0$ where $\alpha_0 : Y \to \mathbf{Z}$ is a well-defined homomorphism. It is enough to show that α_0 is surjective. This follows from the adjointness of G.) As in the group case it now follows that K' is an intersection cohomology complex on \mathfrak{g} coming from a local system on \mathfrak{g}_{reg} . Moreover, W acts naturally on this local system and hence, by "analytic continuation", on K'. In particular, if $\mathcal{O} \in \mathcal{X}_{\mathfrak{g}}$ and $i \in \mathbb{Z}$, then W acts naturally on the *i*-th cohomology sheaf $\mathcal{H}^i K'|_{\mathcal{O}}$ of $K'|_{\mathcal{O}}$, an irreducible G-equivariant local system on \mathcal{O} ; hence if \mathcal{L} is an irreducible G-equivariant local system on \mathcal{O} , then **W** acts naturally on the $\bar{\mathbf{Q}}_l$ -vector space $\operatorname{Hom}(\mathcal{L}, \mathcal{H}^i K'|_{\mathcal{O}})$. We denote this **W**-module (with $i = d_{\mathcal{O}}$) by $V_{\mathcal{O},\mathcal{L}}$. As in [L4], [X1], $V_{\mathcal{O},\mathcal{L}}$ is either 0 or of the form $\overline{\mathbf{Q}}_l \otimes E$ where $E \in \operatorname{Irr}(\mathbf{W})$; moreover, any $E \in \operatorname{Irr}(\mathbf{W})$ arises in this way from a unique $(\mathcal{O}, \mathcal{L})$ and $E \mapsto (\mathcal{O}, \mathcal{L})$ is an injective map

$$S_{\mathfrak{q}}: \operatorname{Irr}(\mathbf{W}) \to \mathcal{X}_{\mathfrak{q}}.$$

If G is not assumed to be adjoint, let G_{ad} be the adjoint group of G and let $\mathfrak{g}_{ad} = \operatorname{Lie} G_{ad}$. The obvious map $\pi : \mathfrak{g} \to \mathfrak{g}_{ad}$ induces a bijective morphism $\mathcal{N}_{\mathfrak{g}} \to \mathcal{N}_{\mathfrak{g}_{ad}}$ and a bijection $\mathcal{X}_{\mathfrak{g}} \to \mathcal{X}_{\mathfrak{g}_{ad}}$. Now any G_{ad} -equivariant irreducible $\overline{\mathfrak{Q}}_l$ -local system on a G_{ad} -orbit in $\mathcal{N}_{\mathfrak{g}_{ad}}$ can be viewed as an irreducible G-equivariant $\overline{\mathfrak{Q}}_l$ -local system on the corresponding G-orbit in $\mathcal{N}_{\mathfrak{g}}$. This yields an injective map $\hat{\mathcal{X}}_{\mathfrak{g}_{ad}} \to \hat{\mathcal{X}}_{\mathfrak{g}}$. We define an injective map $S_{\mathfrak{g}} : \operatorname{Irr}(\mathbf{W}) \to \hat{\mathcal{X}}_{\mathfrak{g}}$ as the composition of the last map with $S_{\mathfrak{g}_{ad}}$.

2.3. For any $u \in \mathcal{U}_G$, let $\mathcal{B}_u = \{B \in \mathcal{B}; u \in B\}$ and let \mathcal{O} be the *G*-orbit of u in \mathcal{U}_G . Note that \mathcal{B}_u is a non-empty subvariety of \mathcal{B} of dimension $d_{\mathcal{O}}/2$; see [S1]. Using this and the definition of S_G we see that $(\mathcal{O}, \bar{\mathbf{Q}}_l)$ is in the image of S_G . Hence there is a well-defined injective map $S'_G : \mathcal{X}_G \to \operatorname{Irr}(\mathbf{W})$ such that for any $\mathcal{O} \in \mathcal{X}_G$ we have $S'_G(\mathcal{O}) = E$ where $E \in \operatorname{Irr}(\mathbf{W})$ is given by $S_G(E) = (\mathcal{O}, \bar{\mathbf{Q}}_l)$.

Similarly, for any $x \in \mathcal{N}_{\mathfrak{g}}$ let $\mathcal{B}_x = \{B \in \mathcal{B}; x \in \text{Lie}B\}$ and let \mathcal{O} be the *G*-orbit of x in $\mathcal{N}_{\mathfrak{g}}$. Note that \mathcal{B}_x is a non-empty subvariety of \mathcal{B} of dimension $d_{\mathcal{O}}/2$; see [HS]. Using this and the definition of $S_{\mathfrak{g}}$ we see that $(\mathcal{O}, \bar{\mathbf{Q}}_l)$ is in the image of $S_{\mathfrak{g}}$. Hence there is a well-defined injective map $S'_{\mathfrak{g}} : \mathcal{X}_{\mathfrak{g}} \to \text{Irr}(\mathbf{W})$ such that for any $\mathcal{O} \in \mathcal{X}_{\mathfrak{g}}$ we have $S'_{\mathfrak{g}}(\mathcal{O}) = E$ where $E \in \text{Irr}(\mathbf{W})$ is given by $S_{\mathfrak{g}}(E) = (\mathcal{O}, \bar{\mathbf{Q}}_l)$.

The maps S'_G, S'_g can be described directly as follows. For $i \in \mathbb{Z}$, we may identify $H^i(\mathcal{B})$ (*l*-adic cohomology) with the stalk of $\mathcal{H}^i K$ at $1 \in G$; hence the **W**-action on K induces a **W**-action on the vector space $H^i(\mathcal{B})$. If $\mathcal{O} \in \mathcal{X}_G$ and $u \in \mathcal{O}$, then the inclusion $\mathcal{B}_u \to \mathcal{B}$ induces a linear map $f_u : H^{d_{\mathcal{O}}}(\mathcal{B}) \to H^{d_{\mathcal{O}}}(\mathcal{B}_u)$ whose kernel is **W**-stable; hence there is an induced action of **W** on the image I_u of f_u . The **W**-module I_u is of the form $\overline{\mathbf{Q}}_l \otimes E$ for a well-defined $E \in \operatorname{Irr}(\mathbf{W})$. We have $S'_G(\mathcal{O}) = E$. Similarly, if $\mathcal{O} \in \mathcal{X}_g$ and $x \in \mathcal{O}$, then the inclusion $\mathcal{B}_x \to \mathcal{B}$ induces a linear map $\phi_x : H^{d_{\mathcal{O}}}(\mathcal{B}) \to H^{d_{\mathcal{O}}}(\mathcal{B}_x)$ whose kernel is **W**-stable; hence there is an induced action of \mathbf{W} on the image I_x of ϕ_x . The **W**-module I_x is of the form $\overline{\mathbf{Q}}_l \otimes E$ for a well-defined $E \in \operatorname{Irr}(\mathbf{W})$. We have $S'_g(\mathcal{O}) = E$.

Let \mathfrak{S}_G be the image of $S'_G : \mathcal{X}_G \to \operatorname{Irr}(\mathbf{W})$. Let $\mathfrak{S}_\mathfrak{g}$ be the image of $S'_\mathfrak{g} : \mathcal{X}_\mathfrak{g} \to \operatorname{Irr}(\mathbf{W})$.

2.4. Any automorphism $a: G \to G$ induces a Lie algebra automorphism $a': \mathfrak{g} \to \mathfrak{g}$ and an automorphism \underline{a} of \mathbf{W} as a Coxeter group. Now a (resp. a') induces a permutation $\mathcal{O} \mapsto a(\mathcal{O})$ (resp. $\mathcal{O} \mapsto a'(\mathcal{O})$) of \mathcal{X}_G (resp. $\mathcal{X}_{\mathfrak{g}}$) denoted again by a (resp. a'). Also \underline{a} induces in an obvious way a permutation of $\operatorname{Irr}(W)$ denoted again by \underline{a} . From the definitions we see that $\underline{a}S'_G = S'_G a, \underline{a}S'_{\mathfrak{g}} = S'_{\mathfrak{g}}a'$.

Let $x \mapsto x^p$ be the *p*-th power map $\mathfrak{g} \to \mathfrak{g}$ (if p > 1) and the 0 map $\mathfrak{g} \to \mathfrak{g}$ (if p = 1). The *r*-th iteration of this map is denoted by $x \mapsto x^{p^r}$; this restricts to a map $\mathcal{N}_{\mathfrak{g}} \to \mathcal{N}_{\mathfrak{g}}$ which is 0 for $r \gg 0$. The following result answers questions of Serre [Se].

Proposition 2.5. (a) Let $u \in U_G$ and let $n \in \mathbb{Z}$ be such that nn' = 1 in \mathbf{k} for some $n' \in \mathbb{Z}$. Then u^n and u are G-conjugate.

(b) Let $x \in \mathcal{N}_{\mathfrak{g}}$ and let $x' = a_0 x + a_1 x^p + a_2 x^{p^2} + \dots$ where $a_0, a_1, a_2, \dots \in \mathbf{k}$, $a_0 \neq 0$ (so that $x' \in \mathcal{N}_{\mathfrak{g}}$). Then x', x are G-conjugate.

We prove (a). Let \mathcal{O} be the *G*-orbit of *u* and let \mathcal{O}' be the *G*-orbit of $u' := u^n$. Clearly, $\mathcal{B}_u \subset \mathcal{B}_{u'}$. Since u' is a power of *u* we have also $\mathcal{B}_{u'} \subset \mathcal{U}$; hence $\mathcal{B}_{u'} = \mathcal{B}_u$. From dim $\mathcal{B}_u = \dim \mathcal{B}_{u'}$ we see that $d_{\mathcal{O}} = d_{\mathcal{O}'}$. The map $f_u : H^{d_{\mathcal{O}}}(\mathcal{B}) \to H^{d_{\mathcal{O}}}(\mathcal{B}_u)$ in 2.3 remains the same if *u* is replaced by u'. From the description of S'_G given in 2.3 we deduce that $S'_G(\mathcal{O}) = S'_G(\mathcal{O}')$. Since S'_G is injective we deduce that $\mathcal{O} = \mathcal{O}'$. This proves (a).

We prove (b). Let \mathcal{O} be the *G*-orbit of x and let \mathcal{O}' be the *G*-orbit of x'. Clearly, $\mathcal{B}_x \subset \mathcal{B}_{x'}$. Since $x = a'_0 x' + a'_1 x'^p + a'_2 x'^{p^2} + \ldots$ with $a'_0, a'_1, a'_2, \cdots \in \mathbf{k}, a'_0 = a_0^{-1}$, we have $\mathcal{B}_{x'} \subset \mathcal{B}_x$; hence $\mathcal{B}_{x'} = \mathcal{B}_x$. From dim $\mathcal{B}_x = \dim \mathcal{B}_{x'}$ we see that $d_{\mathcal{O}} = d_{\mathcal{O}'}$. The map $\phi_x : H^{d_{\mathcal{O}}}(\mathcal{B}) \to H^{d_{\mathcal{O}}}(\mathcal{B}_x)$ in 2.3 remains the same if x is replaced by x'. From the description of S'_G given in 2.3 we deduce that $S'_{\mathfrak{g}}(\mathcal{O}) = S'_{\mathfrak{g}}(\mathcal{O}')$. Since $S'_{\mathfrak{g}}$ is injective we deduce that $\mathcal{O} = \mathcal{O}'$. This proves (b).

Parts (a), (b) of the following result answer questions of Serre [Se]; the proof of (b) below (assuming (a)) is due to Serre [Se].

Proposition 2.6. Let $c : G \to G$ be an automorphism such that for some maximal torus T of G we have $c(t) = t^{-1}$ for all $t \in T$. Let $\tilde{c} : \mathfrak{g} \to \mathfrak{g}$ be the automorphism of \mathfrak{g} induced by c.

- (a) For any $u \in \mathcal{U}_G$, c(u), u are G-conjugate.
- (b) For any $g \in G$, c(g), g^{-1} are G-conjugate.
- (c) For any $x \in \mathcal{N}_{\mathfrak{g}}$, $\tilde{c}(x), x$ are G-conjugate.
- (d) For any $x \in \mathfrak{g}$, $\tilde{c}(x)$, -x are G-conjugate.

We prove (a). Let $\underline{c}: \mathbf{W} \to \mathbf{W}$ be the automorphism induced by c. If $B \in \mathcal{B}$ contains T, then $T \subset c(B)$ and B, c(B) are in relative position w_0 , the longest element of \mathbf{W} . Hence if B, B' in \mathcal{B} contain T and are in relative position $w \in \mathbf{W}$, then c(B), c(B') contain T and are in relative position $w_0ww_0^{-1}$. They are also in relative position $\underline{c}(w)$. It follows that $\underline{c}(w) = w_0ww_0^{-1}$ for all $w \in \mathbf{W}$. Hence the induced permutation $\underline{c}: \operatorname{Irr}(\mathbf{W}) \to \operatorname{Irr}(\mathbf{W})$ is the identity map. Let \mathcal{O} be the G-orbit of $u \in \mathcal{U}_G$. Then $c(\mathcal{O})$ is the G-orbit of c(u). By 2.4 we have $S'_G(c(\mathcal{O})) = \underline{c}(S'_G(\mathcal{O})) = S'_G(\mathcal{O})$. Since S'_G is injective it follows that $\mathcal{O} = c(\mathcal{O})$. This proves (a).

Following [Se], we prove (b) by induction on dim(G). If dim G = 0 the result is trivial. Now assume that dim G > 0. Write g = su = us with s semisimple, u unipotent. If the result holds for $g_1 \in G$, then it holds for any G-conjugate of g_1 . Hence by replacing g by a conjugate we can assume that $s \in T$ so that $c(s) = s^{-1}$. Let $Z(s)^0$ be the connected centralizer of s, a connected reductive subgroup of G containing T. Note that c restricts to an automorphism of $Z(s)^0$ of the same type as $c : G \to G$. Moreover, we have $g \in Z(s)^0$. If $Z(s)^0 \neq G$, then by the induction hypothesis we see that $c(g), g^{-1}$ are conjugate under $Z(s)^0$; hence they are conjugate under G. If $Z(s)^0 = G$, then by (a), c(u), u are conjugate in G. By 2.5(a), u, u^{-1} are conjugate in G. Hence $c(u), u^{-1}$ are conjugate in G. In other words, for some $h \in G$ we have $c(u) = hu^{-1}h$. Since s is central in G and $c(s) = s^{-1}$ we have $c(s) = hs^{-1}h^{-1}$. It follows that $c(g) = c(s)c(u) = hs^{-1}h^{-1}hu^{-1}h = hs^{-1}u^{-1}h^{-1} = hg^{-1}h^{-1}$. This proves (b).

The proof of (c) is completely similar to that of (a); it uses $S'_{\mathfrak{g}}$ instead of S_G . The proof of (d) is completely similar to that of (b); it uses (c) and 2.5(b) instead of (b) and 2.5(a).

3. A parametrization of the set of nilpotent G-orbits in \mathfrak{g}

3.1. Let V be a finite dimensional **Q**-vector space. Let $R \subset V^* = \operatorname{Hom}(V, \mathbf{Q})$ be a (reduced) root system and let $W \subset GL(V)$ be the Weyl group of R. Let Π be a set of simple roots for R. Let $\Theta = \{\beta \in R; \beta - \alpha \notin R \text{ for all } \alpha \in \Pi\}$. For any integer $r \geq 1$ let \mathcal{A}_r (resp. \mathcal{A}'_r) be the set of all $J \subset \Theta$ such that J is linearly independent in V^* and $\sum_{\alpha \in \Pi} \mathbf{Z}\alpha / \sum_{\beta \in J} \mathbf{Z}\beta$ is finite of order r^k for some $k \in \mathbf{N}$ (resp. $k \in \mathbf{Z}_{>0}$). For $J \in \mathcal{A}_r$ let W_J be the subgroup of W generated by the reflections with respect to the roots in J. For any $E \in \operatorname{Irr}(W)$ let b_E be the smallest integer ≥ 0 such that E appears with multiplicity $m_E > 0$ in the b_E -th symmetric power of V regarded as a W-module. Let $\operatorname{Irr}(W)^{\dagger} = \{E \in \operatorname{Irr}(W); m_E = 1\}$. Replacing here (V, W) by (V, W_J) with $J \in \mathcal{A}_r$ we see that b_E is defined for any $E \in \operatorname{Irr}(W_J)$ and that $\operatorname{Irr}(W_J)^{\dagger}$ is defined. For $J \in \mathcal{A}_r$ and $E \in \operatorname{Irr}(W_J)^{\dagger}$ there is a unique $\tilde{E} \in \operatorname{Irr}(W)$ such that \tilde{E} appears with multiplicity 1 in $\operatorname{Ind}_{W_J}^W E$ and $b_E = b_{\tilde{E}}$; moreover, we have $\tilde{E} \in \operatorname{Irr}(W)^{\dagger}$. We set $\tilde{E} = j_{W_J}^W E$. Define $\mathcal{S}_W^1 \subset \operatorname{Irr}(W)^{\dagger}$ as in [L5, 1.3].

Replacing (V, W) by (V, W_J) with $J \in \mathcal{A}_r$ we obtain a subset $\mathcal{S}^1_{W_J} \subset \operatorname{Irr}(W_J)^{\dagger}$. For any integer $r \geq 1$ let \mathcal{S}^r_W be the set of all $E \in \operatorname{Irr}(W)$ such that $E = j^W_{W_J}E_1$ for some $J \in \mathcal{A}_r$ and some $E_1 \in \mathcal{S}^1(W_J)$ (see [L5, 1.3]). If r = 1 this agrees with the earlier definition of \mathcal{S}^1_W since in this case $W_J = W$ for any $J \in \mathcal{A}'_r$. For any integer $r \geq 1$ we define a subset \mathcal{T}^r_W of $\operatorname{Irr}(W)^{\dagger}$ by induction on |W| as follows. If $W = \{1\}$, we set $\mathcal{T}^r_W = \operatorname{Irr}(W)$. If $W \neq \{1\}$, then \mathcal{T}^r_W is the set of all $E \in \operatorname{Irr}(W)$ such that either $E \in \mathcal{S}^1_W$ or $E = j^W_{W_J}E_1$ for some $J \in \mathcal{A}'_r$ and some $E_1 \in \mathcal{T}^r(W_J)$. From the definition it is clear that

$$\mathcal{S}^1_W \subset \mathcal{S}^r_W \subset \mathcal{T}^r_W.$$

When r = 1 we have $\mathcal{S}_W^1 = \mathcal{T}_W^r$.

We apply these definitions in the case where r = p, $V = \mathbf{Q} \otimes \mathbf{Y}_G$ (with **T** being "the maximal torus" of G and $\mathbf{Y}_G = \text{Hom}(\mathbf{k}^*, \mathbf{T})$), R is "the root system" of G(a subset of V^*) with its canonical set of simple roots and $W = \mathbf{W}$ viewed as a subgroup of GL(V). Then the subsets $\mathcal{S}^1_{\mathbf{W}} \subset \mathcal{S}^p_{\mathbf{W}} \subset \mathcal{T}^p_{\mathbf{W}}$ of Irr(\mathbf{W}) are defined. We can now state the following result.

Proposition 3.2. (a) We have $\mathfrak{S}_G = \mathcal{S}_{\mathbf{W}}^p$.

(b) We have $\mathfrak{S}_{\mathfrak{g}} = \mathcal{T}^p_{\mathbf{W}}$.

For (a) see [L5, 1.4]. The proof of (b) is given in 3.5.

Corollary 3.3. There is a unique (injective) map $\tau : \mathcal{X}_G \to \mathcal{X}_g$ such that $S'_G(\xi) = S'_{\mathfrak{g}}(\tau(\xi))$ for all $\xi \in \mathcal{X}_G$.

The existence and uniqueness of τ follows from $\mathfrak{S}_G \subset \mathfrak{S}_\mathfrak{g}$ which in turn follows from 3.2 and the inclusion $\mathcal{S}^p_{\mathbf{W}} \subset \mathcal{T}^p_{\mathbf{W}}$.

It is known that when $p \neq 2$ we have $\operatorname{card} \mathfrak{S}_G = \operatorname{card} \mathfrak{S}_{\mathfrak{g}}$; hence in this case τ is a bijection.

3.4. For $n \in \mathbf{N}$ let W_n be the group of all permutations of the set

 $\{1, 2, \ldots, n, n', \ldots, 2', 1'\}$

which commute with the involution $i \mapsto i', i' \mapsto i$; let W'_n be the subgroup of W_n consisting of the even permutations. Assume that $k \in \mathbf{N}$ is large relative to n. When G is adjoint simple of type B_n or C_n $(n \geq 2)$ we identify $\mathbf{W} = W_n$ in the standard way; we have a bijection $[a_*, a'_*] \leftrightarrow (a_*, a'_*)$, $\operatorname{Irr}(\mathbf{W}) = \operatorname{Irr}(W_n) \leftrightarrow \mathcal{C}^n_k$ as in [L1, 2.3]; moreover, $\operatorname{Irr}(\mathbf{W}) = \operatorname{Irr}(\mathbf{W})^{\dagger}$; see [L1, 2.4]. When G is adjoint simple of type D_n $(n \geq 4)$ we identify $\mathbf{W} = W'_n$ in the standard way; we have a surjective map ζ : $\operatorname{Irr}(\mathbf{W})^{\dagger} = \operatorname{Irr}(W'_n)^{\dagger} \to \mathcal{D}^k_n$ such that for any $\rho \in \operatorname{Irr}(W'_n)$ we have $\zeta(\rho) = (a_*, a'_*)$ where $(a_*, a'_*) \in \mathcal{D}^k_n$ is such that ρ appears in the restriction of $[a_*, a'_*]$ from W_n to W'_n (the set $\operatorname{Irr}(W'_n)^{\dagger}$ is determined by [L1, 2.5]); note that $|\zeta^{-1}(a_*, a'_*)|$ is 2 if $a_* = a'_*$ and is 1 otherwise.

3.5. In this subsection we prove 3.2(b). We can assume that G is adjoint, simple. If p = 1 or p is a good prime for G, then $\mathfrak{S}_{\mathfrak{g}} = \mathfrak{S}_{G}$ hence using 3.2(a) we have $\mathfrak{S}_{\mathfrak{g}} = \mathcal{S}_{\mathbf{W}}^{p}$; in our case we have $\mathbf{W}_{J} = \mathbf{W}$ for any $J \in \mathcal{A}_{p}$ hence from the definitions we have $\mathcal{S}_{\mathbf{W}}^{p} = \mathcal{S}_{\mathbf{W}}^{1} = \mathcal{T}_{\mathbf{W}}^{p}$ and the result follows. In the rest of this subsection we assume that p is a bad prime for G. In this case $\mathfrak{S}_{\mathfrak{g}}$ has been described explicitly by Spaltenstein [S2], [S3], [HS] as follows (assuming that the theory of Springer correspondence holds; this assumption can be removed in view of [X1], [X2] and the remarks in 2.2.)

If G is of type C_n , $n \ge 2$ (p = 2), then we have $\mathfrak{S}_{\mathfrak{g}} = \operatorname{Irr}(\mathbf{W})$. If G is of type B_n , $n \geq 2$ (p = 2), then, according to [S1], $\mathfrak{S}_{\mathfrak{g}} = \{[a_*, a'_*] \in \operatorname{Irr}(\mathbf{W}); (a_*, a'_*) \in {}^{b}\mathcal{C}_{k}^{n}\}.$ (Here k is large and fixed.) If G is of type D_n , $n \ge 4$ (p = 2), then $\mathfrak{S}_{\mathfrak{g}} = \zeta^{-1}({}^d\mathcal{D}_k^n)$. If G is of type G_2 (p = 2 or 3), of type F_4 (p = 3), of type E_6 (p = 2 or 3), of type $E_7 \ (p=3)$, or of type $E_8 \ (p=3 \text{ or } 5)$, then $\mathfrak{S}_{\mathfrak{g}} = \mathfrak{S}_G$. If G is of type $F_4 \ (p=2)$, then $\mathfrak{S}_{\mathfrak{g}} = \mathfrak{S}_G \sqcup \{1_3, 2_3\}$ (notation as in [L3, 4.10]); note that $b_{1_3} = 12, b_{2_3} = 4$). If G is of type E_7 (p = 2), then $\mathfrak{S}_{\mathfrak{g}} = \mathfrak{S}_G \sqcup \{84'_a\}$ (notation as in [L3, 4.12]; we have $b_{84'_a} = 15$). If G is of type E_8 (p = 2), then $\mathfrak{S}_{\mathfrak{g}} = \mathfrak{S}_G \sqcup \{50_x, 700_{xx}\}$ (notation as in [L3, 4.13]; we have $b_{50_x} = 8$, $b_{700_{xx}} = 16$).

On the other hand, for types $B, C, D, \mathcal{T}^2_{\mathbf{W}}$ is computed by induction using 1.2, the formulas for the maps $j_{W_I}^W()$ given in [L6, 4.5, 5.3, 6.3] and the known description of $\mathcal{S}^1_{\mathbf{W}}$; for exceptional types, $\mathcal{T}^p_{\mathbf{W}}$ is computed by induction using the tables in [A] and the known description of $\mathcal{S}^1_{\mathbf{W}}$.

In each case, the explicitly described subset $\mathfrak{S}_\mathfrak{g}$ of $\mathrm{Irr}(\mathbf{W})$ coincides with the explicitly described subset $\mathcal{T}^p_{\mathbf{W}}$. This completes the proof of 3.2(b).

To illustrate the inclusion $\mathfrak{S}_{\mathfrak{g}} \subset \mathcal{T}^p_{\mathbf{W}}$ we note that:

if G is of type E_8 (p=2) then 50_x , 700_{xx} in $\mathfrak{S}_{\mathfrak{g}} - \mathfrak{S}_G$ are obtained by applying $j_{\mathbf{W}_{I}}^{\mathbf{W}}$ (where \mathbf{W}_{J} is of type $E_{7} \times A_{1}$) to $15'_{a} \boxtimes \operatorname{sgn}, 84'_{a} \boxtimes \operatorname{sgn}$ (which belong to $\mathcal{T}_{\mathbf{W}_{J}}^{2^{2}} - \mathcal{S}_{\mathbf{W}_{J}}^{2}, \mathcal{S}_{\mathbf{W}_{J}}^{2} - \mathcal{S}_{\mathbf{W}_{J}}^{1} \text{ respectively};$ if G is of type F_{4} (p = 2) then $1_{3}, 2_{3}$ in $\mathfrak{S}_{\mathfrak{g}} - \mathfrak{S}_{G}$ are obtained by applying $j_{\mathbf{W}_{J}}^{\mathbf{W}}$

(where \mathbf{W}_J is of type $B_4, C_3 \times A_1$) to an object in $\mathcal{S}^2_{\mathbf{W}_J} - \mathcal{S}^1_{\mathbf{W}_J}$.

3.6. If G is of type B_n or C_n , $n \ge 2$ (p = 2), then, according to [LS], $\mathfrak{S}_G =$ $\{[a_*, a'_*] \in \operatorname{Irr}(\mathbf{W}); (a_*, a'_*) \in {}^{b2}\mathcal{C}^n_k\}$. (Here k is large and fixed.) If G is of type D_n , $n \geq 4$ (p = 2), then according to [LS], $\mathfrak{S}_G = \zeta^{-1}(d^2 \mathcal{D}_k^n)$.

ACKNOWLEDGMENT

I wish to thank J.-P. Serre for his interesting questions and comments.

References

- [A] D. Alvis, Induce/restrict matrices for exceptional Weyl groups, arxiv:RT/0506377.
- [HS] D. Holt and N. Spaltenstein, Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic, J. Austral. Math. Soc. (A) 38 (1985), 330-350. MR779199 (86g:17007)
- [L1] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977). 125-175. MR0463275 (57:3228)
- [L2] G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), 169-178. MR641425 (83c:20059)
- [L3] G. Lusztig, Characters of reductive groups over a finite field, Ann. Math. Studies 107, Princeton Univ. Press, 1984. MR742472 (86j:20038)
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), 205-272. MR732546 (86d:20050)
- [L5] G. Lusztig, Unipotent elements in small characteristic, Transform. Groups. 10 (2005), 449-487. MR2183120 (2006m:20074)
- [L6] G. Lusztig, Unipotent classes and special Weyl group representations, J. Algebra 321 (2009), 3418-3449. MR2510055
- [LS] G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for classical groups, Algebraic groups and related topics, Adv. Stud. Pure Math. 6, North-Holland and Kinokuniya, 1985, pp. 289-316. MR803339 (87g:20072a)
- J.-P. Serre, Letters to G.Lusztig, Nov. 15, 2006, Nov. 9, 2008.
- [S1] N. Spaltenstein, Classes unipotentes et sousgroupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, 1982. MR672610 (84a:14024)

- [S2] N. Spaltenstein, Nilpotent classes and sheets in of Lie algebras in bad characteristic, Math.
 Z. 181 (1982), 31-48. MR671712 (83m:17007)
- [S3] N. Spaltenstein, Nilpotent classes in Lie algebras of type F₄ over fields of characteristic 2, J. Fac. Sci. Univ. Tokyo, IA **30** (1984), 517-524. MR731515 (85g:20056)
- [Sp] T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173-207. MR0442103 (56:491)
- [X1] T. Xue, Nilpotent orbits in classical Lie algebras over F_{2n} and Springer's correspondence, Proc. Nat. Acad. Sci. USA 105 (2008), 1126-1128. MR2375447 (2009c:14096)
- [X2] T. Xue, Nilpotent orbits in classical Lie algebras over finite fields of characteristic 2 and the Springer correspondence, Represent. Theory 13 (electronic), (2009), 371-390.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139