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REMARKS ON SPRINGER’S REPRESENTATIONS

G. LUSZTIG

Abstract. We give an explicit description of a set of irreducible representa-
tions of a Weyl group which parametrizes the nilpotent orbits in the Lie algebra
of a connected reductive group in arbitrary characteristic. We also answer a
question of Serre concerning the conjugacy class of a power of a unipotent
element in a connected reductive group.

Introduction

0.1. Let k be an algebraically closed field of characteristic exponent p ≥ 1. Let
G be a connected reductive algebraic group over k and let g be the Lie algebra of
G. Let UG be the variety of unipotent elements of G and let Ng be the variety
of nilpotent elements of g (we say that x ∈ g is nilpotent if for some/any closed
imbedding G ⊂ GL(kn), the image of x under the induced map of Lie algebras
g → End(kn) is nilpotent as an endomorphism). Note that G acts on G and g by
the adjoint action. Let XG (resp. Xg) be the set of G-orbits on UG (resp. on Ng).

We fix a prime number l, l �= p. Let X̂G (resp. X̂g) be the set of pairs (O,L) where
O ∈ XG (resp. O ∈ Xg) and L is an irreducible G-equivariant Q̄l-local system on
O up to isomorphism. Let W be the Weyl group of G. For any Weyl group W let
Irr(W ) be the set of isomorphism classes of irreducible representations of W over
Q. In [Sp], Springer defined (assuming that p = 1 or p � 0) natural injective maps

SG : Irr(W) → X̂G, Sg : Irr(W) → X̂g (each of these two maps determines the

other since in this case we have canonically X̂G = X̂g). In [L2] a new definition
of the map SG (based on intersection homology) was given which applies without
restriction on p. A similar method can be used to define Sg without restriction on

p (see [X1], [X2] and 2.2 below); note that in general X̂G, X̂g cannot be identified.
Now for any O ∈ XG (resp. O ∈ Xg), (O, Q̄l) is in the image of SG (resp. Sg); hence
there is a well-defined injective map S′

G : XG → Irr(W) (resp. S′
g : Xg → Irr(W))

such that for any O ∈ XG (resp. O ∈ Xg) we have S′
G(O) = E (resp. S′

g(O) = E)

where E ∈ Irr(W) is given by SG(E) = (O, Q̄l) (resp. Sg(E) = (O, Q̄l)). Let SG

be the image of S′
G : XG → Irr(W). Let Sg be the image of S′

g : Xg → Irr(W).
In [L5], we gave an a priori definition (in the framework of Weyl groups) of

the subset SG of Irr(W) which parametrizes the unipotent G-orbits in G. In this
paper we give an a priori definition (in a similar spirit) of the subset Sg of Irr(W)
which parametrizes the nilpotent G-orbits in g. (See Proposition 3.2.) This relies
heavily on work of Spaltenstein [S2], [S3] and on [HS]. As an application we define a
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natural injective map from the set of unipotent G-orbits in G to the set of nilpotent
G-orbits in g (see 3.3); this map preserves the dimension of an orbit.

In [Se], Serre asked whether a power un (where n is an integer not divisible by p,
p ≥ 2) of a unipotent element u ∈ G is conjugate to u under G. This is well known
to be true when p � 0. In §2 we answer positively this question in general using
the theory of Springer’s representations; we also discuss an analogous property of
nilpotent elements.

1. Combinatorics

1.1. For k ∈ N let Ek = {a∗ = (a0, a1, . . . , ak) ∈ Nk+1; a0 ≤ a1 ≤ · · · ≤ ak}.
For a∗ ∈ Ek let |a∗| =

∑
i ai. For a∗, a

′
∗ ∈ Ek we set a∗ + a′∗ = (a0 + a′0, a1 +

a′1, . . . , ak + a′k). For any n ∈ N let En
k = {a∗ ∈ Ek; |a∗| = n}. We have an

imbedding En
k → En

k+1, (a0, a1, . . . , ak) �→ (0, a0, a1, . . . , ak). This is a bijection if k
is sufficiently large with respect to n. For n ∈ N let

Cn
k = {(a∗, a′∗) ∈ Ek × Ek; |a∗|+ |a′∗| = n},

Dn
k = {(a∗, a′∗) ∈ Cn

k ; either |a∗| > |a′∗| or a∗ = a′∗}.
Here k is large (relative to n), fixed. Let

bCn
k = {(a∗, a′∗) ∈ Cn

k ; a
′
i ≤ ai + 2 ∀i ∈ [0, k]},

b1Cn
k = {(a∗, a′∗) ∈ Cn

k ; a
′
i ≤ ai + 2 ∀i ∈ [0, k], ai ≤ a′i+1 ∀i ∈ [0, k − 1]},

b2Cn
k = {(a∗, a′∗) ∈ Cn

k ; a
′
i ≤ ai + 2 ∀i ∈ [0, k], ai ≤ a′i+1 + 2 ∀i ∈ [0, k − 1]},

c1Cn
k = {(a∗, a′∗) ∈ Cn

k ; ai ≤ a′i+1 + 1 ∀i ∈ [0, k − 1], a′i ≤ ai + 1 ∀i ∈ [0, k]},
dDn

k = {(a∗, a′∗) ∈ Dn
k ; a

′
i ≤ ai ∀i ∈ [0, k]},

d1Dn
k = {(a∗, a′∗) ∈ Dn

k ; a
′
i ≤ ai ∀i ∈ [0, k], ai ≤ a′i+1 + 2 ∀i ∈ [0, k − 1]},

d2Dn
k = {(a∗, a′∗) ∈ Dn

k ; a
′
i ≤ ai ∀i ∈ [0, k], ai ≤ a′i+1 + 4 ∀i ∈ [0, k − 1]}.

Note that

b1Cn
k ⊂ b2Cn

k ⊂ bCn
k ,

c1Cn
k ⊂ b2Cn

k ⊂ Cn
k ,

d1Dn
k ⊂ d2Dn

k ⊂ dDn
k .

The following statements are obvious. If (a∗, a
′
∗) ∈ Cm

k , (b∗, b
′
∗) ∈ Cm′

k , then (a∗ +

b∗, a
′
∗ + b′∗) ∈ Cm+m′

k . If (a∗, a
′
∗) ∈ bCm

k , (b∗, b
′
∗) ∈ dDm′

k , then (a∗ + b∗, a
′
∗ + b′∗) ∈

bCm+m′

k . If (a∗, a
′
∗) ∈ dDm

k , (b∗, b
′
∗) ∈ dDm′

k , then (a∗ + b∗, a
′
∗ + b′∗) ∈ dCm+m′

k .
In the following result we assume that k is large relative to n.

Proposition 1.2. (a) Let (c∗, c
′
∗) ∈ Cn

k . Then either (c∗, c
′
∗) ∈ c1Cn

k or there exist

m ≥ 1,m′ ≥ 1 such that m + m′ = n and (a∗, a
′
∗) ∈ Cm

k , (b∗, b
′
∗) ∈ Cm′

k such that
(c∗, c

′
∗) = (a∗ + b∗, a

′
∗ + b′∗).

(b) Let (c∗, c
′
∗) ∈ bCn

k . Then either (c∗, c
′
∗) ∈ b1Cn

k or there exist m ≥ 0,m′ ≥ 2

such that m + m′ = n and (a∗, a
′
∗) ∈ bCm

k , (b∗, b
′
∗) ∈ dDm′

k , such that (c∗, c
′
∗) =

(a∗ + b∗, a
′
∗ + b′∗).

(c) Let (c∗, c
′
∗) ∈ dCn

k . Then either (c∗, c
′
∗) ∈ d1Cn

k or there exist m ≥ 2,m′ ≥ 2

such that m + m′ = n and (a∗, a
′
∗) ∈ dDm

k , (b∗, b
′
∗) ∈ dDm′

k such that (c∗, c
′
∗) =

(a∗ + b∗, a
′
∗ + b′∗).
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We prove (a). Assume first that cs < cs+1 for some s ∈ [0, k − 1]. Define
(b∗, b

′
∗) ∈ Ck

r , r = k − s > 0, by bi = 1 for i ∈ [s + 1, k], bi = 0 for i ∈ [0, s], b′i = 0
for i ∈ [0, k]. Define (a∗, a

′
∗) ∈ Ck

n−r by ai = ci − 1 for i ∈ [s+1, k], ai = ci in [0, s],
a′∗ = c′∗. We have a∗ + b∗ = c∗, a

′
∗ + b′∗ = c′∗. If r < n we see that (a) holds. If

r = n, then (c∗, c
′
∗) = (b∗, b

′
∗) ∈ c1Cn

k and (a) holds again.
Next we assume that c′s < c′s+1 for some s ∈ [0, k − 1]. Define (b∗, b

′
∗) ∈ Ck

r ,
r = k − s > 0, by bi = 0 for i ∈ [0, k], b′i = 1 for i ∈ [s + 1, k], b′i = 0 for i ∈ [0, s].
Define (a∗, a

′
∗) ∈ Ck

n−r by a∗ = c∗, a
′
i = c′i − 1 for i ∈ [s+ 1, k], a′i = c′i for i ∈ [0, s].

We have a∗ + b∗ = c∗, a
′
∗ + b′∗ = c′∗. If r < n we see that (a) holds. If r = n, then

(c∗, c
′
∗) = (b∗, b

′
∗) ∈ c1Cn

k and (a) holds again.
Finally, we assume that c0 = c1 = · · · = cr, c

′
0 = c′1 = · · · = c′r. Since k is large

we can assume that c0 = 0, c′0 = 0. Then n = 0 and (c∗, c
′
∗) ∈ c1Cn

k .
We prove (b). If n = 0 we have clearly (c∗, c

′
∗) ∈ b1Cn

k . Hence we can assume
that n > 0 and that the result is true when n is replaced by n′ ∈ [0, n− 1].

Assume first that we can find 0 < t ≤ s ≤ k such that c′j = cj+2 for j ∈ [s+1, k],
c′j < cj + 2 for j ∈ [t, s], ct−1 < ct. Note that if s < k, then c′s < c′s+1; indeed,

c′s < cs − 2 ≤ cs+1 − 2 = c′s+1. Define (b∗, b
′
∗) ∈ dDk

r , r = 2k − t − s + 1 > 0 by
bi = 1 for i ∈ [t, k], bi = 0 for i ∈ [0, t − 1], b′i = 1 for i ∈ [s + 1, k], b′i = 0 for
i ∈ [0, s]. Define (a∗, a

′
∗) ∈ bCk

n−r by ai = ci−1 for i ∈ [t, k], ai = ci for i ∈ [0, t−1],
a′i = c′i−1 for i ∈ [s+1, k], a′i = c′i for i ∈ [0, s]. We have a∗+b∗ = c∗, a

′
∗+b′∗ = c′∗.

If r ≥ 2, we see that (b) holds. If r = 1, then t = s = k and ak = ck − 1, ai = ci
for i ∈ [0, k − 1], a′i = c′i for i ∈ [0, k]. The induction hypothesis is applicable to
(a∗, a

′
∗) ∈ bCk

n−1. If (a∗, a
′
∗) ∈ b1Ck

n−1, then clearly (c∗, c
′
∗) ∈ b1Ck

n−1 and (b) holds.

If (a∗, a
′
∗) /∈ b1Ck

n−1, then we can find m ≥ 0,m′ ≥ 2 such that m + m′ = n − 1

and (ã∗, ã
′
∗) ∈ bCm

k , (b̃∗, b̃
′
∗) ∈ dDm′

k such that (a∗, a
′
∗) = (ã∗ + b̃∗, ã

′
∗ + b̃′∗). Then

(c∗, c
′
∗) = (ã∗+ b̃∗+b∗, ã

′
∗+ b̃′∗+b′∗) where (ã∗, ã

′
∗) ∈ bCm

k , (b̃∗+b∗, b̃
′
∗+b′∗) ∈ dDm′+1

k

so that (b) holds.
Next we assume that ci > 0 for some i. Then we have 0 = c0 = c1 = · · · = cl−1 <

cl for some l ∈ [0, k]. If c′s < cs + 2 for some s ∈ [l, k], then we can assume that
s is maximum possible with this property and there are two possibilities. Either
c′i < ci + 2 for all i ∈ [l, s] and then by the previous paragraph (with t = l) we
see that (b) holds; or c′i = ci + 2 for some i ∈ [l, s] and letting t− 1 be the largest
such i we have 0 < t ≤ s, c′j < cj + 2 for j ∈ [t, s], c′j = cj + 2 for j = t − 1 and
ct−1 = c′t−1 − 2 ≤ c′t − 2 < ct; using again the previous paragraph we see that (b)
holds. Thus we may assume that c′i = ci + 2 for all i ∈ [l, k]. Assume, in addition,
that c′s < c′s+1 for some s ∈ [l, k − 1]. We can assume that s is maximum possible
so that c′s < c′s+1 = · · · = c′k. We have cs+1 = c′s+1 − 2 > c′s − 2 = cs; hence

cs < cs+1. Define (b∗, b
′
∗) ∈ dDk

r , r = 2k− 2s ≥ 2, by bi = 1 for i ∈ [s+1, k], bi = 0
for i ∈ [0, s], b′i = 1 for i ∈ [s+ 1, k], b′i = 0 for i ∈ [0, s]. Define (a∗, a

′
∗) ∈ bCk

n−r by
ai = ci− 1 for i ∈ [s+1, k], ai = ci for i ∈ [0, s], a′i = c′i− 1 for i ∈ [s+1, k], a′i = c′i
for i ∈ [0, s]. We have a∗ + b∗ = c∗, a

′
∗ + b′∗ = c′∗. We see that (b) holds. Thus we

can assume that c′l = c′l+1 = · · · = c′k = N + 2 so that cl = cl+1 = · · · = ck = N .

Note that c′i ≤ 2 for i ∈ [0, l − 1]. We have (c∗, c
′
∗) ∈ b1Cn

k so that (b) holds.
Finally, we assume that c0 = c1 = · · · = ck = 0. Then c′i ≤ 2 for i ∈ [0, k] and

(c∗, c
′
∗) ∈ b1Cn

k so that (b) holds. This completes the proof of (b).
We prove (c). If n = 0 we have clearly (c∗, c

′
∗) ∈ d1Dn

k . Hence we can assume
that n > 0 and that the result is true when n is replaced by n′ ∈ [0, n− 1].
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Assume first that we can find 0 < t ≤ s ≤ k such that c′j = cj for j ∈ [s+ 1, k],
c′j < cj for j ∈ [t, s], ct−1 < ct. Note that if s < k, then c′s < c′s+1; indeed,

c′s < cs ≤ cs+1 = c′s+1. Define (b∗, b
′
∗) ∈ dDk

r , r = 2k − t − s+ 1 > 0 by bi = 1 for
i ∈ [t, k], bi = 0 for i ∈ [0, t− 1], b′i = 1 for i ∈ [s+ 1, k], b′i = 0 for i ∈ [0, s]. Define
(a∗, a

′
∗) ∈ dDk

n−r by ai = ci − 1 for i ∈ [t, k], ai = ci for i ∈ [0, t − 1], a′i = c′i − 1
for i ∈ [s + 1, k], a′i = c′i for i ∈ [0, s]. We have a∗ + b∗ = c∗, a

′
∗ + b′∗ = c′∗. If

n−2 ≥ r ≥ 2 we see that (c) holds. If r = 1, then t = s = k and ak = ck−1, ai = ci
for i ∈ [0, k − 1], a′i = c′i for i ∈ [0, k]. The induction hypothesis is applicable to
(a∗, a

′
∗) ∈ dDk

n−1. If (a∗, a
′
∗) ∈ d1Dk

n−1, then clearly (c∗, c
′
∗) ∈ d1Dk

n−1 and (c) holds.

If (a∗, a
′
∗) /∈ d1Dk

n−1, then we can find m ≥ 2,m′ ≥ 2 such that m + m′ = n − 1

and (ã∗, ã
′
∗) ∈ dDm

k , (b̃∗, b̃
′
∗) ∈ dDm′

k such that (a∗, a
′
∗) = (ã∗ + b̃∗, ã

′
∗ + b̃′∗). Then

(c∗, c
′
∗) = (ã∗+ b̃∗+b∗, ã

′
∗+ b̃′∗+b′∗) where (ã∗, ã

′
∗) ∈ dDm

k , (b̃∗+b∗, b̃
′
∗+b′∗) ∈ dDm′+1

k

so that (c) holds. If r = n − 1, then ai = 0 for i ∈ [0, k − 1], ak = 0, a′i = 0 for
i ∈ [0, k]; hence ci = 1 for i ∈ [t, k − 1], ck = 2, ci = 0 for i ∈ [0, t − 1], c′i = 1 for
i ∈ [s + 1, k], c′i = 0 for i ∈ [0, s]. Hence (c∗, c

′
∗) ∈ dDn

k so that (c) holds. If r = n,
then (c∗, c

′
∗) = (b∗, b

′
∗) ∈ dDn

k so that (c) holds.
Next we assume that ci > 0 for some i. Then we have 0 = c0 = c1 = · · · =

cl−1 < cl for some l ∈ [0, k]. If c′s < cs for some s ∈ [l, k], then we can assume that
s is maximum possible with this property and there are two possibilities. Either
c′i < ci for all i ∈ [l, s] and then by the previous paragraph (with t = l) we see that
(c) holds; or c′i = ci for some i ∈ [l, s] and letting t−1 be the largest such i we have
0 < t ≤ s, c′j < cj for j ∈ [t, s], c′j = cj for j = t − 1 and ct−1 = c′t−1 ≤ c′t < ct;
using again the previous paragraph we see that (c) holds. Thus we may assume that
c′i = ci for all i ∈ [l, k]. Assume, in addition, that c′s < c′s+1 for some s ∈ [l, k − 1].
We can assume that s is maximum possible so that c′s < c′s+1 = · · · = c′k. We have

cs+1 = c′s+1 > c′s = cs hence cs < cs+1. Define (b∗, b
′
∗) ∈ dDk

r ,r = 2k − 2s ≥ 2,
by bi = 1 for i ∈ [s + 1, k], bi = 0 for i ∈ [0, s], b′i = 1 for i ∈ [s + 1, k], b′i = 0
for i ∈ [0, s]. Define (a∗, a

′
∗) ∈ dDk

n−r by ai = ci − 1 for i ∈ [s + 1, k], ai = ci for
i ∈ [0, s], a′i = c′i − 1 for i ∈ [s + 1, k], a′i = c′i for i ∈ [0, s]. We have a∗ + b∗ = c∗,
a′∗ + b′∗ = c′∗. If r ≤ n − 2, we see that (c) holds. If r = n − 1, then ai = 0 for
i ∈ [0, k − 1], ak = 0, a′i = 0 for i ∈ [0, k]; hence ci = 1 for i ∈ [s+ 1, k − 1], ck = 2,
ci = 0 for i ∈ [0, s], c′i = 1 for i ∈ [s+1, k], c′i = 0 for i ∈ [0, s]. Hence (c∗, c

′
∗) ∈ dDn

k

so that (c) holds. If r = n, then (c∗, c
′
∗) = (b∗, b

′
∗) ∈ dDn

k so that (c) holds. Thus
we can assume that c′l = c′l+1 = · · · = c′k = N so that cl = cl+1 = · · · = ck = N .

Note that c′i = 0 for i ∈ [0, l − 1]. We have (c∗, c
′
∗) ∈ d1Dn

k so that (c) holds.
Finally, we assume that c0 = c1 = · · · = ck = 0. Then c′i = 0 for i ∈ [0, k]. In

this case we have n = 0 and (c∗, c
′
∗) ∈ d1Dn

k so that (c) holds. This completes the
proof of (c).

2. On Serre’s questions

2.1. For any affine algebraic group H over k we denote by LieH the Lie algebra of
H. For any O ∈ XG (or O ∈ Xg) we set dO = 2dimB − dimO.

2.2. We recall the definition of Springer’s representations following [L2]. Let B be

the variety of Borel subgroups of G. Let B̃ = {(g,B) ∈ G × B; g ∈ B} and let

f : B̃ → G be the first projection. Let K = f!Q̄l. In [L2] it was observed that
K is an intersection cohomology complex on G coming from a local system on the
open dense subset of G consisting on regular semisimple elements. Moreover, W
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acts naturally on this local system and hence, by “analytic continuation”, on K.
In particular, if O ∈ XG and i ∈ Z, then W acts naturally on the i-th cohomology
sheaf HiK|O of K|O, an irreducible G-equivariant local system on O; hence if L
is an irreducible G-equivariant local system on O, then W acts naturally on the
Q̄l-vector space Hom(L,HiK|O). We denote this W-module (with i = dO) by
VO,L. As shown in [L4], VO,L is either 0 or of the form Q̄l ⊗E where E ∈ Irr(W);
moreover, any E ∈ Irr(W) arises in this way from a unique (O,L) and E �→ (O,L)
is an injective map

SG : Irr(W) → X̂G.

We would like to define a similar map from Irr(W) to X̂g. Let B̃′ = {(x,B) ∈
g × B;x ∈ LieB} and let f ′ : B̃′ → g be the first projection. Let K ′ = f ′

! Q̄l.
Now if p is small the set of regular semisimple elements in g may be empty (this
is the case for example if G = SL2(k), p = 2) so the method of [L4] cannot be
used directly. However, T. Xue [X1], [X2] has observed that the method of [L4],
[L2] can be applied if G is a classical group of adjoint type and p = 2 (in that case
the set of regular semisimple elements in g is open dense in g). More generally, for
any G which is adjoint, the set of regular semisimple elements in g is open dense
in g. (Here is a proof. We must only check that if T is a maximal torus of G and
t = LieT , then the set treg of regular semisimple elements in t is open dense in t.
Let Y = Hom(k∗, T ). We have t = k ⊗ Y . Now treg is the set of all x ∈ t such
that for any root α : t → k we have α(x) �= 0. It is enough to show that any
root α : t → k is �= 0. We have α = 1 ⊗ α0 where α0 : Y → Z is a well-defined
homomorphism. It is enough to show that α0 is surjective. This follows from the
adjointness of G.) As in the group case it now follows that K ′ is an intersection
cohomology complex on g coming from a local system on greg. Moreover, W acts
naturally on this local system and hence, by “analytic continuation”, on K ′. In
particular, if O ∈ Xg and i ∈ Z, then W acts naturally on the i-th cohomology
sheaf HiK ′|O of K ′|O, an irreducible G-equivariant local system on O; hence if L
is an irreducible G-equivariant local system on O, then W acts naturally on the
Q̄l-vector space Hom(L,HiK ′|O). We denote this W-module (with i = dO) by
VO,L. As in [L4], [X1], VO,L is either 0 or of the form Q̄l ⊗ E where E ∈ Irr(W);
moreover, any E ∈ Irr(W) arises in this way from a unique (O,L) and E �→ (O,L)
is an injective map

Sg : Irr(W) → X̂g.

If G is not assumed to be adjoint, let Gad be the adjoint group of G and let gad =
LieGad. The obvious map π : g → gad induces a bijective morphism Ng → Ngad

and
a bijection Xg → Xgad

. Now any Gad-equivariant irreducible Q̄l-local system on a
Gad-orbit in Ngad

can be viewed as an irreducible G-equivariant Q̄l-local system

on the corresponding G-orbit in Ng. This yields an injective map X̂gad
→ X̂g. We

define an injective map Sg : Irr(W) → X̂g as the composition of the last map with
Sgad

.

2.3. For any u ∈ UG, let Bu = {B ∈ B;u ∈ B} and let O be the G-orbit of u in UG.
Note that Bu is a non-empty subvariety of B of dimension dO/2; see [S1]. Using
this and the definition of SG we see that (O, Q̄l) is in the image of SG. Hence there
is a well-defined injective map S′

G : XG → Irr(W) such that for any O ∈ XG we
have S′

G(O) = E where E ∈ Irr(W) is given by SG(E) = (O, Q̄l).
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Similarly, for any x ∈ Ng let Bx = {B ∈ B;x ∈ LieB} and let O be the G-orbit
of x in Ng. Note that Bx is a non-empty subvariety of B of dimension dO/2; see
[HS]. Using this and the definition of Sg we see that (O, Q̄l) is in the image of Sg.
Hence there is a well-defined injective map S′

g : Xg → Irr(W) such that for any

O ∈ Xg we have S′
g(O) = E where E ∈ Irr(W) is given by Sg(E) = (O, Q̄l).

The maps S′
G, S

′
g can be described directly as follows. For i ∈ Z, we may identify

Hi(B) (l-adic cohomology) with the stalk of HiK at 1 ∈ G; hence the W-action
on K induces a W-action on the vector space Hi(B). If O ∈ XG and u ∈ O,
then the inclusion Bu → B induces a linear map fu : HdO (B) → HdO (Bu) whose
kernel is W-stable; hence there is an induced action of W on the image Iu of fu.
The W-module Iu is of the form Q̄l ⊗ E for a well-defined E ∈ Irr(W). We have
S′
G(O) = E. Similarly, if O ∈ Xg and x ∈ O, then the inclusion Bx → B induces

a linear map φx : HdO (B) → HdO (Bx) whose kernel is W-stable; hence there is
an induced action of W on the image Ix of φx. The W-module Ix is of the form
Q̄l ⊗ E for a well-defined E ∈ Irr(W). We have S′

g(O) = E.
Let SG be the image of S′

G : XG → Irr(W). Let Sg be the image of S′
g : Xg →

Irr(W).

2.4. Any automorphism a : G → G induces a Lie algebra automorphism a′ : g → g

and an automorphism a of W as a Coxeter group. Now a (resp. a′) induces a
permutation O �→ a(O) (resp. O �→ a′(O)) of XG (resp. Xg) denoted again by
a (resp. a′). Also a induces in an obvious way a permutation of Irr(W ) denoted
again by a. From the definitions we see that aS′

G = S′
Ga, aS

′
g = S′

ga
′.

Let x �→ xp be the p-th power map g → g (if p > 1) and the 0 map g → g

(if p = 1). The r-th iteration of this map is denoted by x �→ xpr

; this restricts to
a map Ng → Ng which is 0 for r � 0. The following result answers questions of
Serre [Se].

Proposition 2.5. (a) Let u ∈ UG and let n ∈ Z be such that nn′ = 1 in k for
some n′ ∈ Z. Then un and u are G-conjugate.

(b) Let x ∈ Ng and let x′ = a0x + a1x
p + a2x

p2

+ . . . where a0, a1, a2, · · · ∈ k,
a0 �= 0 (so that x′ ∈ Ng). Then x′, x are G-conjugate.

We prove (a). Let O be the G-orbit of u and let O′ be the G-orbit of u′ := un.
Clearly, Bu ⊂ Bu′ . Since u′ is a power of u we have also Bu′ ⊂ U ; hence Bu′ = Bu.
From dimBu = dimBu′ we see that dO = dO′ . The map fu : HdO (B) → HdO (Bu)
in 2.3 remains the same if u is replaced by u′. From the description of S′

G given in
2.3 we deduce that S′

G(O) = S′
G(O′). Since S′

G is injective we deduce that O = O′.
This proves (a).

We prove (b). Let O be the G-orbit of x and let O′ be the G-orbit of x′. Clearly,

Bx ⊂ Bx′ . Since x = a′0x
′ + a′1x

′p + a′2x
′p2

+ . . . with a′0, a
′
1, a

′
2, · · · ∈ k, a′0 = a−1

0 ,
we have Bx′ ⊂ Bx; hence Bx′ = Bx. From dimBx = dimBx′ we see that dO = dO′ .
The map φx : HdO (B) → HdO (Bx) in 2.3 remains the same if x is replaced by x′.
From the description of S′

G given in 2.3 we deduce that S′
g(O) = S′

g(O′). Since S′
g

is injective we deduce that O = O′. This proves (b).
Parts (a), (b) of the following result answer questions of Serre [Se]; the proof of

(b) below (assuming (a)) is due to Serre [Se].
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Proposition 2.6. Let c : G → G be an automorphism such that for some maximal
torus T of G we have c(t) = t−1 for all t ∈ T . Let c̃ : g → g be the automorphism
of g induced by c.

(a) For any u ∈ UG, c(u), u are G-conjugate.
(b) For any g ∈ G, c(g), g−1 are G-conjugate.
(c) For any x ∈ Ng, c̃(x), x are G-conjugate.
(d) For any x ∈ g, c̃(x),−x are G-conjugate.

We prove (a). Let c : W → W be the automorphism induced by c. If B ∈ B
contains T , then T ⊂ c(B) and B, c(B) are in relative position w0, the longest
element of W. Hence if B,B′ in B contain T and are in relative position w ∈ W,
then c(B), c(B′) contain T and are in relative position w0ww

−1
0 . They are also

in relative position c(w). It follows that c(w) = w0ww
−1
0 for all w ∈ W. Hence

the induced permutation c : Irr(W) → Irr(W) is the identity map. Let O be the
G-orbit of u ∈ UG. Then c(O) is the G-orbit of c(u). By 2.4 we have S′

G(c(O)) =
c(S′

G(O)) = S′
G(O). Since S′

G is injective it follows that O = c(O). This proves
(a).

Following [Se], we prove (b) by induction on dim(G). If dimG = 0 the result
is trivial. Now assume that dimG > 0. Write g = su = us with s semisimple,
u unipotent. If the result holds for g1 ∈ G, then it holds for any G-conjugate
of g1. Hence by replacing g by a conjugate we can assume that s ∈ T so that
c(s) = s−1. Let Z(s)0 be the connected centralizer of s, a connected reductive
subgroup of G containing T . Note that c restricts to an automorphism of Z(s)0

of the same type as c : G → G. Moreover, we have g ∈ Z(s)0. If Z(s)0 �= G,
then by the induction hypothesis we see that c(g), g−1 are conjugate under Z(s)0;
hence they are conjugate under G. If Z(s)0 = G, then by (a), c(u), u are conjugate
in G. By 2.5(a), u, u−1 are conjugate in G. Hence c(u), u−1 are conjugate in G.
In other words, for some h ∈ G we have c(u) = hu−1h. Since s is central in
G and c(s) = s−1 we have c(s) = hs−1h−1. It follows that c(g) = c(s)c(u) =
hs−1h−1hu−1h = hs−1u−1h−1 = hg−1h−1. This proves (b).

The proof of (c) is completely similar to that of (a); it uses S′
g instead of SG.

The proof of (d) is completely similar to that of (b); it uses (c) and 2.5(b) instead
of (b) and 2.5(a).

3. A parametrization of the set of nilpotent G-orbits in g

3.1. Let V be a finite dimensional Q-vector space. Let R ⊂ V ∗ = Hom(V,Q) be a
(reduced) root system and let W ⊂ GL(V ) be the Weyl group of R. Let Π be a set
of simple roots for R. Let Θ = {β ∈ R;β − α /∈ R for all α ∈ Π}. For any integer
r ≥ 1 let Ar (resp. A′

r) be the set of all J ⊂ Θ such that J is linearly independent
in V ∗ and

∑
α∈Π Zα/

∑
β∈J Zβ is finite of order rk for some k ∈ N (resp. k ∈ Z>0).

For J ∈ Ar let WJ be the subgroup of W generated by the reflections with respect
to the roots in J . For any E ∈ Irr(W ) let bE be the smallest integer ≥ 0 such that
E appears with multiplicity mE > 0 in the bE-th symmetric power of V regarded
as a W -module. Let Irr(W )† = {E ∈ Irr(W );mE = 1}. Replacing here (V,W )
by (V,WJ) with J ∈ Ar we see that bE is defined for any E ∈ Irr(WJ) and that

Irr(WJ)
† is defined. For J ∈ Ar and E ∈ Irr(WJ)

† there is a unique Ẽ ∈ Irr(W )

such that Ẽ appears with multiplicity 1 in IndWWJ
E and bE = bẼ ; moreover, we

have Ẽ ∈ Irr(W )†. We set Ẽ = jWWJ
E. Define S1

W ⊂ Irr(W )† as in [L5, 1.3].
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Replacing (V,W ) by (V,WJ) with J ∈ Ar we obtain a subset S1
WJ

⊂ Irr(WJ)
†.

For any integer r ≥ 1 let Sr
W be the set of all E ∈ Irr(W ) such that E = jWWJ

E1

for some J ∈ Ar and some E1 ∈ S1(WJ) (see [L5, 1.3]). If r = 1 this agrees with
the earlier definition of S1

W since in this case WJ = W for any J ∈ A′
r. For any

integer r ≥ 1 we define a subset T r
W of Irr(W )† by induction on |W | as follows. If

W = {1}, we set T r
W = Irr(W ). If W �= {1}, then T r

W is the set of all E ∈ Irr(W )
such that either E ∈ S1

W or E = jWWJ
E1 for some J ∈ A′

r and some E1 ∈ T r(WJ).
From the definition it is clear that

S1
W ⊂ Sr

W ⊂ T r
W .

When r = 1 we have S1
W = T r

W .
We apply these definitions in the case where r = p, V = Q⊗YG (with T being

“the maximal torus” of G and YG = Hom(k∗,T)), R is “the root system” of G
(a subset of V ∗) with its canonical set of simple roots and W = W viewed as a
subgroup of GL(V ). Then the subsets S1

W ⊂ Sp
W ⊂ T p

W of Irr(W) are defined. We
can now state the following result.

Proposition 3.2. (a) We have SG = Sp
W.

(b) We have Sg = T p
W.

For (a) see [L5, 1.4]. The proof of (b) is given in 3.5.

Corollary 3.3. There is a unique (injective) map τ : XG → Xg such that S′
G(ξ) =

S′
g(τ (ξ)) for all ξ ∈ XG.

The existence and uniqueness of τ follows from SG ⊂ Sg which in turn follows
from 3.2 and the inclusion Sp

W ⊂ T p
W.

It is known that when p �= 2 we have cardSG = cardSg; hence in this case τ is
a bijection.

3.4. For n ∈ N let Wn be the group of all permutations of the set

{1, 2, . . . , n, n′, . . . , 2′, 1′}
which commute with the involution i �→ i′, i′ �→ i; let W ′

n be the subgroup of Wn

consisting of the even permutations. Assume that k ∈ N is large relative to n.
When G is adjoint simple of type Bn or Cn (n ≥ 2) we identify W = Wn in the
standard way; we have a bijection [a∗, a

′
∗] ↔ (a∗, a

′
∗), Irr(W) = Irr(Wn) ↔ Cn

k

as in [L1, 2.3]; moreover, Irr(W) = Irr(W)†; see [L1, 2.4]. When G is adjoint
simple of type Dn (n ≥ 4) we identify W = W ′

n in the standard way; we have a
surjective map ζ : Irr(W)† = Irr(W ′

n)
† → Dk

n such that for any ρ ∈ Irr(W ′
n) we

have ζ(ρ) = (a∗, a
′
∗) where (a∗, a

′
∗) ∈ Dk

n is such that ρ appears in the restriction
of [a∗, a

′
∗] from Wn to W ′

n (the set Irr(W ′
n)

† is determined by [L1, 2.5]); note that
|ζ−1(a∗, a

′
∗)| is 2 if a∗ = a′∗ and is 1 otherwise.

3.5. In this subsection we prove 3.2(b). We can assume that G is adjoint, simple.
If p = 1 or p is a good prime for G, then Sg = SG hence using 3.2(a) we have
Sg = Sp

W; in our case we have WJ = W for any J ∈ Ap hence from the definitions
we have Sp

W = S1
W = T p

W and the result follows. In the rest of this subsection we
assume that p is a bad prime for G. In this case Sg has been described explicitly
by Spaltenstein [S2], [S3], [HS] as follows (assuming that the theory of Springer
correspondence holds; this assumption can be removed in view of [X1], [X2] and
the remarks in 2.2.)
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If G is of type Cn, n ≥ 2 (p = 2), then we have Sg = Irr(W). If G is of type Bn,
n ≥ 2 (p = 2), then, according to [S1], Sg = {[a∗, a′∗] ∈ Irr(W); (a∗, a

′
∗) ∈ bCn

k }.
(Here k is large and fixed.) If G is of type Dn, n ≥ 4 (p = 2), then Sg = ζ−1(dDn

k ).
If G is of type G2 (p = 2 or 3), of type F4 (p = 3), of type E6 (p = 2 or 3), of type
E7 (p = 3), or of type E8 (p = 3 or 5), then Sg = SG. If G is of type F4 (p = 2),
then Sg = SG�{13, 23} (notation as in [L3, 4.10]); note that b13 = 12, b23 = 4). If
G is of type E7 (p = 2), then Sg = SG � {84′a} (notation as in [L3, 4.12]; we have
b84′a = 15). If G is of type E8 (p = 2), then Sg = SG � {50x, 700xx} (notation as
in [L3, 4.13]; we have b50x = 8, b700xx

= 16).
On the other hand, for types B,C,D, T 2

W is computed by induction using 1.2, the
formulas for the maps jWWJ

() given in [L6, 4.5, 5.3, 6.3] and the known description

of S1
W; for exceptional types, T p

W is computed by induction using the tables in [A]
and the known description of S1

W.
In each case, the explicitly described subset Sg of Irr(W) coincides with the

explicitly described subset T p
W. This completes the proof of 3.2(b).

To illustrate the inclusion Sg ⊂ T p
W we note that:

if G is of type E8 (p = 2) then 50x, 700xx in Sg −SG are obtained by applying
jWWJ

(where WJ is of type E7 × A1) to 15′a � sgn, 84′a � sgn (which belong to

T 2
WJ

− S2
WJ

, S2
WJ

− S1
WJ

respectively);

if G is of type F4 (p = 2) then 13, 23 in Sg −SG are obtained by applying jWWJ

(where WJ is of type B4, C3 ×A1) to an object in S2
WJ

− S1
WJ

.

3.6. If G is of type Bn or Cn, n ≥ 2 (p = 2), then, according to [LS], SG =
{[a∗, a′∗] ∈ Irr(W); (a∗, a

′
∗) ∈ b2Cn

k }. (Here k is large and fixed.) If G is of type Dn,
n ≥ 4 (p = 2), then according to [LS], SG = ζ−1(d2Dn

k ).
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