Remarks on Springer’s representations
HTML articles powered by AMS MathViewer
- by G. Lusztig
- Represent. Theory 13 (2009), 391-400
- DOI: https://doi.org/10.1090/S1088-4165-09-00358-6
- Published electronically: September 3, 2009
- PDF | Request permission
Abstract:
We give an explicit description of a set of irreducible representations of a Weyl group which parametrizes the nilpotent orbits in the Lie algebra of a connected reductive group in arbitrary characteristic. We also answer a question of Serre concerning the conjugacy class of a power of a unipotent element in a connected reductive group.References
- D. Alvis, Induce/restrict matrices for exceptional Weyl groups, arxiv:RT/0506377.
- D. F. Holt and N. Spaltenstein, Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic, J. Austral. Math. Soc. Ser. A 38 (1985), no. 3, 330–350. MR 779199, DOI 10.1017/S1446788700023636
- G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), no. 2, 125–175. MR 463275, DOI 10.1007/BF01390002
- G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, DOI 10.1016/0001-8708(81)90038-4
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- G. Lusztig, Unipotent elements in small characteristic, Transform. Groups 10 (2005), no. 3-4, 449–487. MR 2183120, DOI 10.1007/s00031-005-0405-1
- G. Lusztig, Unipotent classes and special Weyl group representations, J. Algebra 321 (2009), no. 11, 3418–3449. MR 2510055, DOI 10.1016/j.jalgebra.2008.04.004
- G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for classical groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 289–316. MR 803339, DOI 10.2969/aspm/00610289
- J.-P. Serre, Letters to G.Lusztig, Nov. 15, 2006, Nov. 9, 2008.
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610, DOI 10.1007/BFb0096302
- Nicolas Spaltenstein, Nilpotent classes and sheets of Lie algebras in bad characteristic, Math. Z. 181 (1982), no. 1, 31–48. MR 671712, DOI 10.1007/BF01214979
- N. Spaltenstein, Nilpotent classes in Lie algebras of type $F_{4}$ over fields of characteristic $2$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), no. 3, 517–524. MR 731515
- T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207. MR 442103, DOI 10.1007/BF01390009
- Ting Xue, Nilpotent orbits in classical Lie algebras over $\textbf {F}_{2^n}$ and the Springer correspondence, Proc. Natl. Acad. Sci. USA 105 (2008), no. 4, 1126–1128. MR 2375447, DOI 10.1073/pnas.0709626104
- T. Xue, Nilpotent orbits in classical Lie algebras over finite fields of characteristic $2$ and the Springer correspondence, Represent. Theory 13 (electronic), (2009), 371-390.
Bibliographic Information
- G. Lusztig
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Received by editor(s): May 5, 2009
- Published electronically: September 3, 2009
- Additional Notes: Supported in part by the National Science Foundation
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 13 (2009), 391-400
- MSC (2000): Primary 20G99
- DOI: https://doi.org/10.1090/S1088-4165-09-00358-6
- MathSciNet review: 2540702