## Remarks on Springer’s representations

HTML articles powered by AMS MathViewer

- by G. Lusztig PDF
- Represent. Theory
**13**(2009), 391-400 Request permission

## Abstract:

We give an explicit description of a set of irreducible representations of a Weyl group which parametrizes the nilpotent orbits in the Lie algebra of a connected reductive group in arbitrary characteristic. We also answer a question of Serre concerning the conjugacy class of a power of a unipotent element in a connected reductive group.## References

- D. Alvis,
*Induce/restrict matrices for exceptional Weyl groups*, arxiv:RT/0506377. - D. F. Holt and N. Spaltenstein,
*Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic*, J. Austral. Math. Soc. Ser. A**38**(1985), no. 3, 330–350. MR**779199**, DOI 10.1017/S1446788700023636 - G. Lusztig,
*Irreducible representations of finite classical groups*, Invent. Math.**43**(1977), no. 2, 125–175. MR**463275**, DOI 10.1007/BF01390002 - G. Lusztig,
*Green polynomials and singularities of unipotent classes*, Adv. in Math.**42**(1981), no. 2, 169–178. MR**641425**, DOI 10.1016/0001-8708(81)90038-4 - George Lusztig,
*Characters of reductive groups over a finite field*, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR**742472**, DOI 10.1515/9781400881772 - G. Lusztig,
*Intersection cohomology complexes on a reductive group*, Invent. Math.**75**(1984), no. 2, 205–272. MR**732546**, DOI 10.1007/BF01388564 - G. Lusztig,
*Unipotent elements in small characteristic*, Transform. Groups**10**(2005), no. 3-4, 449–487. MR**2183120**, DOI 10.1007/s00031-005-0405-1 - G. Lusztig,
*Unipotent classes and special Weyl group representations*, J. Algebra**321**(2009), no. 11, 3418–3449. MR**2510055**, DOI 10.1016/j.jalgebra.2008.04.004 - G. Lusztig and N. Spaltenstein,
*On the generalized Springer correspondence for classical groups*, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 289–316. MR**803339**, DOI 10.2969/aspm/00610289 - J.-P. Serre,
*Letters to G.Lusztig*, Nov. 15, 2006, Nov. 9, 2008. - Nicolas Spaltenstein,
*Classes unipotentes et sous-groupes de Borel*, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR**672610**, DOI 10.1007/BFb0096302 - Nicolas Spaltenstein,
*Nilpotent classes and sheets of Lie algebras in bad characteristic*, Math. Z.**181**(1982), no. 1, 31–48. MR**671712**, DOI 10.1007/BF01214979 - N. Spaltenstein,
*Nilpotent classes in Lie algebras of type $F_{4}$ over fields of characteristic $2$*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**30**(1984), no. 3, 517–524. MR**731515** - T. A. Springer,
*Trigonometric sums, Green functions of finite groups and representations of Weyl groups*, Invent. Math.**36**(1976), 173–207. MR**442103**, DOI 10.1007/BF01390009 - Ting Xue,
*Nilpotent orbits in classical Lie algebras over $\textbf {F}_{2^n}$ and the Springer correspondence*, Proc. Natl. Acad. Sci. USA**105**(2008), no. 4, 1126–1128. MR**2375447**, DOI 10.1073/pnas.0709626104 - T. Xue,
*Nilpotent orbits in classical Lie algebras over finite fields of characteristic $2$ and the Springer correspondence*, Represent. Theory**13**(electronic), (2009), 371-390.

## Additional Information

**G. Lusztig**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Received by editor(s): May 5, 2009
- Published electronically: September 3, 2009
- Additional Notes: Supported in part by the National Science Foundation
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory
**13**(2009), 391-400 - MSC (2000): Primary 20G99
- DOI: https://doi.org/10.1090/S1088-4165-09-00358-6
- MathSciNet review: 2540702