Generalized exponents of small representations. I
HTML articles powered by AMS MathViewer
- by Bogdan Ion
- Represent. Theory 13 (2009), 401-426
- DOI: https://doi.org/10.1090/S1088-4165-09-00359-8
- Published electronically: September 10, 2009
- PDF | Request permission
Abstract:
This is the first paper in a sequence devoted to giving manifestly non-negative formulas for generalized exponents of small representations in all types. The main part of this paper illustrates the overall structure of the argument on root systems of type $A$ and discusses the relationship with the Lascoux-Schützenberger charge formulaReferences
- W. M. Beynon and G. Lusztig, Some numerical results on the characters of exceptional Weyl groups, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 3, 417–426. MR 503002, DOI 10.1017/S0305004100055249
- Abraham Broer, The sum of generalized exponents and Chevalley’s restriction theorem for modules of covariants, Indag. Math. (N.S.) 6 (1995), no. 4, 385–396. MR 1365182, DOI 10.1016/0019-3577(96)81754-X
- Ranee Kathryn Brylinski, Limits of weight spaces, Lusztig’s $q$-analogs, and fiberings of adjoint orbits, J. Amer. Math. Soc. 2 (1989), no. 3, 517–533. MR 984511, DOI 10.1090/S0894-0347-1989-0984511-X
- Lynne M. Butler, Subgroup lattices and symmetric functions, Mem. Amer. Math. Soc. 112 (1994), no. 539, vi+160. MR 1223236, DOI 10.1090/memo/0539
- Ira M. Gessel, Multipartite $P$-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289–317. MR 777705, DOI 10.1090/conm/034/777705
- E. A. Gutkin, Representations of the Weyl group in the space of vectors of zero weight, Uspehi Mat. Nauk 28 (1973), no. 5 (173), 237–238 (Russian). MR 0409671
- Bogdan Ion, The Cherednik kernel and generalized exponents, Int. Math. Res. Not. 36 (2004), 1869–1895. MR 2058356, DOI 10.1155/S1073792804133485
- B. Ion, Generalized exponents of small representations. II. http://arxiv.org/abs/0904.2487
- B. Ion, Generalized exponents of small representations. III. In preparation.
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
- Bertram Kostant, On Macdonald’s $\eta$-function formula, the Laplacian and generalized exponents, Advances in Math. 20 (1976), no. 2, 179–212. MR 485661, DOI 10.1016/0001-8708(76)90186-9
- Alain Lascoux and Marcel-Paul Schützenberger, Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 7, A323–A324 (French, with English summary). MR 472993
- G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), no. 2, 125–175. MR 463275, DOI 10.1007/BF01390002
- George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Mark Reeder, Zero weight spaces and the Springer correspondence, Indag. Math. (N.S.) 9 (1998), no. 3, 431–441. MR 1692153, DOI 10.1016/S0019-3577(98)80010-4
- R. Steinberg, A geometric approach to the representations of the full linear group over a Galois field, Trans. Amer. Math. Soc. 71 (1951), 274–282. MR 43784, DOI 10.1090/S0002-9947-1951-0043784-0
- John R. Stembridge, First layer formulas for characters of $\textrm {SL}(n,\textbf {C})$, Trans. Amer. Math. Soc. 299 (1987), no. 1, 319–350. MR 869415, DOI 10.1090/S0002-9947-1987-0869415-X
- John R. Stembridge, On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math. 140 (1989), no. 2, 353–396. MR 1023791, DOI 10.2140/pjm.1989.140.353
- John R. Stembridge, Graded multiplicities in the Macdonald kernel. I, IMRP Int. Math. Res. Pap. 4 (2005), 183–236. MR 2199453, DOI 10.1155/IMRP.2005.183
- David A. Vogan Jr., Associated varieties and unipotent representations, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 315–388. MR 1168491
Bibliographic Information
- Bogdan Ion
- Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260; Algebra and Number Theory Research Center, Faculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei St., Bucharest, Romania
- MR Author ID: 645344
- Email: bion@pitt.edu
- Received by editor(s): April 18, 2009
- Received by editor(s) in revised form: June 26, 2009
- Published electronically: September 10, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 13 (2009), 401-426
- MSC (2000): Primary 17B10
- DOI: https://doi.org/10.1090/S1088-4165-09-00359-8
- MathSciNet review: 2540703