The Weil-Steinberg character of finite classical groups
HTML articles powered by AMS MathViewer
- by G. Hiss and A. Zalesski; \\ with an appendix by Olivier Brunat
- Represent. Theory 13 (2009), 427-459
- DOI: https://doi.org/10.1090/S1088-4165-09-00351-3
- Published electronically: September 24, 2009
- PDF | Request permission
Corrigendum: Represent. Theory 15 (2011), 729-732.
Abstract:
Let $G$ be one of the groups $\operatorname {GL}(n,q)$ or $U(n,q)$, and let $H$ denote the subgroup $\operatorname {GL}({n-1},q)$ or $U(n-1,q)$, respectively. We show that the restriction of the Steinberg character of $G$ to $H$ equals the product of the Weil character and the Steinberg character of $H$.References
- Jianbei An and Gerhard Hiss, Restricting the Steinberg character in finite symplectic groups, J. Group Theory 9 (2006), no. 2, 251â264. MR 2220418, DOI 10.1515/JGT.2006.017
- Jianbei An and Shih-Chang Huang, Character tables of parabolic subgroups of the Chevalley groups of type $G_2$, Comm. Algebra 34 (2006), no. 5, 1763â1792. MR 2229489, DOI 10.1080/00927870500542747
- A. A. Baranov and I. D. Suprunenko, Branching rules for modular fundamental representations of symplectic groups, Bull. London Math. Soc. 32 (2000), no. 4, 409â420. MR 1760805, DOI 10.1112/S002460930000727X
- N. Bourbaki, ĂlĂ©ments de mathĂ©matique. Fasc. XXXIV. Groupes et algĂšbres de Lie. Chapitre IV: Groupes de Coxeter et systĂšmes de Tits. Chapitre V: Groupes engendrĂ©s par des rĂ©flexions. Chapitre VI: systĂšmes de racines, ActualitĂ©s Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Jonathan Brundan, Richard Dipper, and Alexander Kleshchev, Quantum linear groups and representations of $\textrm {GL}_n(\textbf {F}_q)$, Mem. Amer. Math. Soc. 149 (2001), no. 706, viii+112. MR 1804485, DOI 10.1090/memo/0706
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841, DOI 10.1017/CBO9781139172417
- Klaus Doerk and Trevor Hawkes, Finite soluble groups, De Gruyter Expositions in Mathematics, vol. 4, Walter de Gruyter & Co., Berlin, 1992. MR 1169099, DOI 10.1515/9783110870138
- Meinolf Geck, Gerhard Hiss, Frank LĂŒbeck, Gunter Malle, and Götz Pfeiffer, CHEVIEâa system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, 175â210. Computational methods in Lie theory (Essen, 1994). MR 1486215, DOI 10.1007/BF01190329
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- Paul GĂ©rardin, Weil representations associated to finite fields, J. Algebra 46 (1977), no. 1, 54â101. MR 460477, DOI 10.1016/0021-8693(77)90394-5
- R. B. Howlett and G. I. Lehrer, Representations of generic algebras and finite groups of Lie type, Trans. Amer. Math. Soc. 280 (1983), no. 2, 753â779. MR 716849, DOI 10.1090/S0002-9947-1983-0716849-6
- James E. Humphreys, Modular representations of finite groups of Lie type, London Mathematical Society Lecture Note Series, vol. 326, Cambridge University Press, Cambridge, 2006. MR 2199819
- I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594â635. MR 332945, DOI 10.2307/2373731
- G. Lusztig, On the representations of reductive groups with disconnected centre, AstĂ©risque 168 (1988), 10, 157â166. Orbites unipotentes et reprĂ©sentations, I. MR 1021495
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
- D. Suprunenko, Soluble and nilpotent linear groups, American Mathematical Society, Providence, R.I., 1963. MR 0154918
- A. E. ZalesskiÄ and I. D. Suprunenko, Permutation representations and a fragment of the decomposition matrix of symplectic and special linear groups over a finite field, Sibirsk. Mat. Zh. 31 (1990), no. 5, 46â60, 213 (Russian); English transl., Siberian Math. J. 31 (1990), no. 5, 744â755 (1991). MR 1088915, DOI 10.1007/BF00974487
- A. E. ZalesskiÄ, A fragment of the decomposition matrix of the special unitary group over a finite field, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 1, 26â41, 221 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 1, 23â39. MR 1044046, DOI 10.1070/IM1991v036n01ABEH001944
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- Paul GĂ©rardin, Weil representations associated to finite fields, J. Algebra 46 (1977), no. 1, 54â101. MR 460477, DOI 10.1016/0021-8693(77)90394-5
Bibliographic Information
- G. Hiss
- Affiliation: Lehrstuhl D fĂŒr Mathematik, RWTH Aachen University, 52056 Aachen, Germany
- MR Author ID: 86475
- Email: gerhard.hiss@math.rwth-aachen.de
- A. Zalesski
- Affiliation: School of Mathematics, University of East Anglia, Norwich, NR47TJ, United Kingdom
- MR Author ID: 196858
- Email: alexandre.zalesski@gmail.com
- Olivier Brunat
- Affiliation: FakultĂ€t fĂŒr Mathematik, Ruhr-UniversitĂ€t Bochum, UniversitĂ€tsstrasse 150, 44780 Bochum
- Email: olivier.brunat@ruhr-uni-bochum.de
- Received by editor(s): September 26, 2007
- Received by editor(s) in revised form: June 14, 2008
- Published electronically: September 24, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 13 (2009), 427-459
- MSC (2000): Primary 20G40, 20C33
- DOI: https://doi.org/10.1090/S1088-4165-09-00351-3
- MathSciNet review: 2550472