D-modules on the affine flag variety and representations of affine Kac-Moody algebras
HTML articles powered by AMS MathViewer
- by Edward Frenkel and Dennis Gaitsgory
- Represent. Theory 13 (2009), 470-608
- DOI: https://doi.org/10.1090/S1088-4165-09-00360-4
- Published electronically: November 2, 2009
Abstract:
The present paper studies the connection between the category of modules over the affine Kac-Moody Lie algebra at the critical level, and the category of D-modules on the affine flag scheme $G((t))/I$, where $I$ is the Iwahori subgroup. We prove a localization-type result, which establishes an equivalence between certain subcategories on both sides. We also establish an equivalence between a certain subcategory of Kac-Moody modules, and the category of quasi-coherent sheaves on the scheme of Miura opers for the Langlands dual group, thereby proving a conjecture of the authors in 2006.References
- S. Arkhipov, R. Bezrukavnikov, Perverse sheaves on affine flags and Langlands duality, Israel J. of Math. 170 (2009), 135–185.
- S. Arkhipov, A. Braverman, R. Bezrukavnikov, D. Gaitsgory, and I. Mirković, Modules over the small quantum group and semi-infinite flag manifold, Transform. Groups 10 (2005), no. 3-4, 279–362. MR 2183116, DOI 10.1007/s00031-005-0401-5
- Sergey Arkhipov, Roman Bezrukavnikov, and Victor Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc. 17 (2004), no. 3, 595–678. MR 2053952, DOI 10.1090/S0894-0347-04-00454-0
- Alexandre Beĭlinson and Joseph Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, available at http://www.math.uchicago.edu/$\sim$arinkin/langlands/
- Alexander Beilinson and Vadim Vologodsky, A DG guide to Voevodsky’s motives, Geom. Funct. Anal. 17 (2008), no. 6, 1709–1787. MR 2399083, DOI 10.1007/s00039-007-0644-5
- Roman Bezrukavnikov, Noncommutative counterparts of the Springer resolution, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1119–1144. MR 2275638
- Alexander Beilinson and Vladimir Drinfeld, Chiral algebras, American Mathematical Society Colloquium Publications, vol. 51, American Mathematical Society, Providence, RI, 2004. MR 2058353, DOI 10.1090/coll/051
- Vladimir Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643–691. MR 2028075, DOI 10.1016/j.jalgebra.2003.05.001
- Boris Feigin and Edward Frenkel, Affine Kac-Moody algebras at the critical level and Gel′fand-Dikiĭ algebras, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 197–215. MR 1187549, DOI 10.1142/s0217751x92003781
- Edward Frenkel and Dennis Gaitsgory, $D$-modules on the affine Grassmannian and representations of affine Kac-Moody algebras, Duke Math. J. 125 (2004), no. 2, 279–327. MR 2096675, DOI 10.1215/S0012-7094-04-12524-2
- Edward Frenkel and Dennis Gaitsgory, Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69–260. MR 2263193, DOI 10.1007/978-0-8176-4532-8_{3}
- Edward Frenkel and Dennis Gaitsgory, Fusion and convolution: applications to affine Kac-Moody algebras at the critical level, Pure Appl. Math. Q. 2 (2006), no. 4, Special Issue: In honor of Robert D. MacPherson., 1255–1312. MR 2282421, DOI 10.4310/PAMQ.2006.v2.n4.a14
- E. Frenkel and D. Gaitsgory, Localization of $\widehat {\mathfrak {g}}$-modules on the affine Grassmannian, math.RT/0512562, to appear in Annals of Math.
- Edward Frenkel and Dennis Gaitsgory, Geometric realizations of Wakimoto modules at the critical level, Duke Math. J. 143 (2008), no. 1, 117–203. MR 2414746, DOI 10.1215/00127094-2008-017
- D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2001), no. 2, 253–280. MR 1826370, DOI 10.1007/s002220100122
- Dennis Gaitsgory, Appendix: braiding compatibilities, Representation theory of algebraic groups and quantum groups, Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Tokyo, 2004, pp. 91–100. MR 2074590, DOI 10.2969/aspm/04010091
- D. Gaitsgory, The notion of category over an algebraic stack, math.AG/0507192.
- Henning Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (2005), no. 5, 1128–1162. MR 2157133, DOI 10.1112/S0010437X05001375
- J. Lurie, Derived Algebraic Geometry II: Non-commutative algebra, available at J. Lurie’s homepage.
- I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143. MR 2342692, DOI 10.4007/annals.2007.166.95
Bibliographic Information
- Edward Frenkel
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- MR Author ID: 257624
- ORCID: 0000-0001-6519-8132
- Email: frenkel@math.berkeley.edu
- Dennis Gaitsgory
- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- Email: gaitsgde@math.harvard.edu
- Received by editor(s): December 6, 2007
- Received by editor(s) in revised form: July 6, 2009
- Published electronically: November 2, 2009
- Additional Notes: The first author was supported by DARPA and AFOSR through the grant FA9550-07-1-0543.
The second author was supported by NSF grant 0600903. - © Copyright 2009 Edward Frenkel and Dennis Gaitsgory
- Journal: Represent. Theory 13 (2009), 470-608
- MSC (2010): Primary 17B67; Secondary 13N10
- DOI: https://doi.org/10.1090/S1088-4165-09-00360-4
- MathSciNet review: 2558786