Unramified representations of reductive groups over finite rings
HTML articles powered by AMS MathViewer
- by Alexander Stasinski
- Represent. Theory 13 (2009), 636-656
- DOI: https://doi.org/10.1090/S1088-4165-09-00350-1
- Published electronically: November 9, 2009
- PDF | Request permission
Abstract:
Lusztig has given a construction of certain representations of reductive groups over finite local principal ideal rings of characteristic $p$, extending the construction of Deligne and Lusztig of representations of reductive groups over finite fields. We generalize Lusztig’s results to reductive groups over arbitrary finite local rings. This generalization uses the Greenberg functor and the theory of group schemes over Artinian local rings.References
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- Michel Demazure, Schémas en groupes réductifs, Bull. Soc. Math. France 93 (1965), 369–413 (French). MR 197467, DOI 10.24033/bsmf.1629
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841, DOI 10.1017/CBO9781139172417
- Paul Gérardin, Construction de séries discrètes $p$-adiques, Lecture Notes in Mathematics, Vol. 462, Springer-Verlag, Berlin-New York, 1975. Sur les séries discrètes non ramifiées des groupes réductifs déployés $p$-adiques. MR 0396859, DOI 10.1007/BFb0082161
- Marvin J. Greenberg, Schemata over local rings, Ann. of Math. (2) 73 (1961), 624–648. MR 126449, DOI 10.2307/1970321
- Marvin J. Greenberg, Schemata over local rings. II, Ann. of Math. (2) 78 (1963), 256–266. MR 156855, DOI 10.2307/1970342
- Gregory Hill, Regular elements and regular characters of $\textrm {GL}_n({\scr O})$, J. Algebra 174 (1995), no. 2, 610–635. MR 1334228, DOI 10.1006/jabr.1995.1143
- Gregory Hill, Semisimple and cuspidal characters of $\textrm {GL}_n({\scr O})$, Comm. Algebra 23 (1995), no. 1, 7–25. MR 1311772, DOI 10.1080/00927879508825204
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- George Lusztig, Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. MR 518617, DOI 10.1090/cbms/039
- G. Lusztig, Representations of reductive groups over finite rings, Represent. Theory 8 (2004), 1–14. MR 2048585, DOI 10.1090/S1088-4165-04-00232-8
- Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274458
Bibliographic Information
- Alexander Stasinski
- Affiliation: Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom
- Address at time of publication: School of Mathematics, University of Southampton, Southampton, SO17 1BJ United Kingdom
- Email: a.stasinski@soton.ac.uk
- Received by editor(s): September 16, 2008
- Received by editor(s) in revised form: February 17, 2009
- Published electronically: November 9, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 13 (2009), 636-656
- MSC (2000): Primary 20G99; Secondary 14L15
- DOI: https://doi.org/10.1090/S1088-4165-09-00350-1
- MathSciNet review: 2558788