Unramified representations of reductive groups over finite rings
Author:
Alexander Stasinski
Journal:
Represent. Theory 13 (2009), 636-656
MSC (2000):
Primary 20G99; Secondary 14L15
DOI:
https://doi.org/10.1090/S1088-4165-09-00350-1
Published electronically:
November 9, 2009
MathSciNet review:
2558788
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Lusztig has given a construction of certain representations of reductive groups over finite local principal ideal rings of characteristic $p$, extending the construction of Deligne and Lusztig of representations of reductive groups over finite fields. We generalize Lusztig’s results to reductive groups over arbitrary finite local rings. This generalization uses the Greenberg functor and the theory of group schemes over Artinian local rings.
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI https://doi.org/10.2307/1971021
- Michel Demazure, Schémas en groupes réductifs, Bull. Soc. Math. France 93 (1965), 369–413 (French). MR 197467
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841
- Paul Gérardin, Construction de séries discrètes $p$-adiques, Lecture Notes in Mathematics, Vol. 462, Springer-Verlag, Berlin-New York, 1975. Sur les séries discrètes non ramifiées des groupes réductifs déployés $p$-adiques. MR 0396859
- Marvin J. Greenberg, Schemata over local rings, Ann. of Math. (2) 73 (1961), 624–648. MR 126449, DOI https://doi.org/10.2307/1970321
- Marvin J. Greenberg, Schemata over local rings. II, Ann. of Math. (2) 78 (1963), 256–266. MR 156855, DOI https://doi.org/10.2307/1970342
- Gregory Hill, Regular elements and regular characters of ${\rm GL}_n({\scr O})$, J. Algebra 174 (1995), no. 2, 610–635. MR 1334228, DOI https://doi.org/10.1006/jabr.1995.1143
- Gregory Hill, Semisimple and cuspidal characters of ${\rm GL}_n({\scr O})$, Comm. Algebra 23 (1995), no. 1, 7–25. MR 1311772, DOI https://doi.org/10.1080/00927879508825204
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- George Lusztig, Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. MR 518617
- G. Lusztig, Representations of reductive groups over finite rings, Represent. Theory 8 (2004), 1–14. MR 2048585, DOI https://doi.org/10.1090/S1088-4165-04-00232-8
- Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274458
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20G99, 14L15
Retrieve articles in all journals with MSC (2000): 20G99, 14L15
Additional Information
Alexander Stasinski
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom
Address at time of publication:
School of Mathematics, University of Southampton, Southampton, SO17 1BJ United Kingdom
Email:
a.stasinski@soton.ac.uk
Received by editor(s):
September 16, 2008
Received by editor(s) in revised form:
February 17, 2009
Published electronically:
November 9, 2009
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.