Center of infinitesimal Cherednik algebras of $\mathfrak {gl}_n$
HTML articles powered by AMS MathViewer
- by Akaki Tikaradze
- Represent. Theory 14 (2010), 1-8
- DOI: https://doi.org/10.1090/S1088-4165-10-00363-8
- Published electronically: January 4, 2010
- PDF | Request permission
Abstract:
We show that the center of an infinitesimal Cherednik algebra of $\mathfrak {gl}_n$ is isomorphic to the polynomial algebra of $n$ variables. As consequences of this fact, we show that an analog of Duflo’s theorem holds and all objects in the category $\mathcal {O}$ have finite length.References
- K. Brown and K. Changtong, Symplectic reflection algebras in positive characteristic, arxiv:0709.2338 (2007).
- K. A. Brown and K. R. Goodearl, Homological aspects of Noetherian PI Hopf algebras of irreducible modules and maximal dimension, J. Algebra 198 (1997), no. 1, 240–265. MR 1482982, DOI 10.1006/jabr.1997.7109
- Pavel Etingof and Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348. MR 1881922, DOI 10.1007/s002220100171
- Pavel Etingof, Wee Liang Gan, and Victor Ginzburg, Continuous Hecke algebras, Transform. Groups 10 (2005), no. 3-4, 423–447. MR 2183119, DOI 10.1007/s00031-005-0404-2
- Victor Ginzburg, On primitive ideals, Selecta Math. (N.S.) 9 (2003), no. 3, 379–407. MR 2006573, DOI 10.1007/s00029-003-0338-2
- Dmitri I. Panyushev, On the coadjoint representation of $\Bbb Z_2$-contractions of reductive Lie algebras, Adv. Math. 213 (2007), no. 1, 380–404. MR 2331248, DOI 10.1016/j.aim.2006.12.011
- A. Khare and A. Tikaradze, Center and representations of infinitesimal Hecke algebras of $\mathfrak {sl}_2$, arxiv:0807.4776 (2008).
- Mustapha Raïs, La représentation coadjointe du groupe affine, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 1, xi, 207–237 (French, with English summary). MR 500922
- M. Rais, Les invariants polynômes de la représentation coadjointe de groupes inhomogénes, arxiv:0903.5146 (2009).
- S. P. Smith, A class of algebras similar to the enveloping algebra of $\textrm {sl}(2)$, Trans. Amer. Math. Soc. 322 (1990), no. 1, 285–314. MR 972706, DOI 10.1090/S0002-9947-1990-0972706-5
- A. Tikaradze, Infinitesimal Cherednik algebras of $\mathfrak {gl}_2$, arxiv:0810.2001 (2008).
Bibliographic Information
- Akaki Tikaradze
- Affiliation: Department of Mathematics, The University of Toledo, Toledo, Ohio 43606
- MR Author ID: 676866
- Email: atikara@utnet.utoledo.edu
- Received by editor(s): May 5, 2009
- Received by editor(s) in revised form: July 7, 2009
- Published electronically: January 4, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 14 (2010), 1-8
- MSC (2010): Primary 17-XX
- DOI: https://doi.org/10.1090/S1088-4165-10-00363-8
- MathSciNet review: 2577654