Computation of Weyl groups of $G$-varieties
HTML articles powered by AMS MathViewer
- by Ivan V. Losev
- Represent. Theory 14 (2010), 9-69
- DOI: https://doi.org/10.1090/S1088-4165-10-00365-1
- Published electronically: January 5, 2010
- PDF | Request permission
Abstract:
Let $G$ be a connected reductive group. To any irreducible $G$-variety one assigns a certain linear group generated by reflections called the Weyl group. Weyl groups play an important role in the study of embeddings of homogeneous spaces. We establish algorithms for computing Weyl groups for homogeneous spaces and affine homogeneous vector bundles. For some special classes of $G$-varieties (affine homogeneous vector bundles of maximal rank, affine homogeneous spaces, homogeneous spaces of maximal rank with a discrete group of central automorphisms) we compute Weyl groups more or less explicitly.References
- E. M. Andreev, Ă. B. Vinberg, and A. G. ĂlaĆĄvili, Orbits of highest dimension of semisimple linear Lie groups, Funkcional. Anal. i PriloĆŸen. 1 (1967), no. 4, 3â7 (Russian). MR 0267040
- N. Bourbaki, ĂlĂ©ments de mathĂ©matique. Fasc. XXXVIII: Groupes et algĂšbres de Lie. Chapitre VII: Sous-algĂšbres de Cartan, Ă©lĂ©ments rĂ©guliers. Chapitre VIII: AlgĂšbres de Lie semi-simples dĂ©ployĂ©es, ActualitĂ©s Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1364, Hermann, Paris, 1975 (French). MR 0453824
- Michel Brion and Franz Pauer, Valuations des espaces homogĂšnes sphĂ©riques, Comment. Math. Helv. 62 (1987), no. 2, 265â285 (French). MR 896097, DOI 10.1007/BF02564447
- P. Bravi. Wonderful varieties of type D. Ph. D. thesis, UniversitĂ di Roma âLa Sapienzaâ, 2003.
- Michel Brion, Vers une gĂ©nĂ©ralisation des espaces symĂ©triques, J. Algebra 134 (1990), no. 1, 115â143 (French). MR 1068418, DOI 10.1016/0021-8693(90)90214-9
- Elie Cartan, Sur certaines formes Riemanniennes remarquables des gĂ©omĂ©tries Ă groupe fondamental simple, Ann. Sci. Ăcole Norm. Sup. (3) 44 (1927), 345â467 (French). MR 1509283, DOI 10.24033/asens.781
- S. Cupit-Foutou. Wonderful varieties: A geometrical realization. Preprint (2009), arXiv:0907.2852.
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349â462 (3 plates) (Russian). MR 0047629
- A. G. ĂlaĆĄvili, Canonical form and stationary subalgebras of points in general position for simple linear Lie groups, Funkcional. Anal. i PriloĆŸen. 6 (1972), no. 1, 51â62 (Russian). MR 0304554
- A. G. ĂlaĆĄvili, Stationary subalgebras of points of general position for irreducible linear Lie groups, Funkcional. Anal. i PriloĆŸen. 6 (1972), no. 2, 65â78 (Russian). MR 0304555
- Friedrich Knop, Weylgruppe und Momentabbildung, Invent. Math. 99 (1990), no. 1, 1â23 (German, with English summary). MR 1029388, DOI 10.1007/BF01234409
- Friedrich Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) Manoj Prakashan, Madras, 1991, pp. 225â249. MR 1131314
- Friedrich Knop, Ăber Bewertungen, welche unter einer reduktiven Gruppe invariant sind, Math. Ann. 295 (1993), no. 2, 333â363 (German, with English summary). MR 1202396, DOI 10.1007/BF01444891
- Friedrich Knop, The asymptotic behavior of invariant collective motion, Invent. Math. 116 (1994), no. 1-3, 309â328. MR 1253195, DOI 10.1007/BF01231563
- Friedrich Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153â174. MR 1311823, DOI 10.1090/S0894-0347-96-00179-8
- Friedrich Knop, Some remarks on multiplicity free spaces, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 301â317. MR 1653036
- Friedrich Knop, A connectedness property of algebraic moment maps, J. Algebra 258 (2002), no. 1, 122â136. Special issue in celebration of Claudio Procesiâs 60th birthday. MR 1958900, DOI 10.1016/S0021-8693(02)00509-4
- Andrew S. Leahy, A classification of multiplicity free representations, J. Lie Theory 8 (1998), no. 2, 367â391. MR 1650378
- I. V. Losev, Computation of Cartan spaces for affine homogeneous spaces, Mat. Sb. 198 (2007), no. 10, 31â56 (Russian, with Russian summary); English transl., Sb. Math. 198 (2007), no. 9-10, 1407â1431. MR 2362821, DOI 10.1070/SM2007v198n10ABEH003889
- Ivan Losev, Combinatorial invariants of algebraic Hamiltonian actions, Mosc. Math. J. 8 (2008), no. 3, 493â519, 616 (English, with English and Russian summaries). MR 2483222, DOI 10.17323/1609-4514-2008-8-3-493-519
- I.V. Losev. On fibers of algebraic invariant moment maps. Preprint (2007), arXiv:math.AG/0703296, 37 pages. To appear in Transform. Groups.
- Ivan V. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 (2009), no. 2, 315â343. MR 2495078, DOI 10.1215/00127094-2009-013
- D. Luna and R. W. Richardson, A generalization of the Chevalley restriction theorem, Duke Math. J. 46 (1979), no. 3, 487â496. MR 544240, DOI 10.1215/S0012-7094-79-04623-4
- Domingo Luna, Sur les orbites fermĂ©es des groupes algĂ©briques rĂ©ductifs, Invent. Math. 16 (1972), 1â5 (French). MR 294351, DOI 10.1007/BF01391210
- D. Luna, VariĂ©tĂ©s sphĂ©riques de type $A$, Publ. Math. Inst. Hautes Ătudes Sci. 94 (2001), 161â226 (French). MR 1896179, DOI 10.1007/s10240-001-8194-0
- D. Luna and Th. Vust, Plongements dâespaces homogĂšnes, Comment. Math. Helv. 58 (1983), no. 2, 186â245 (French). MR 705534, DOI 10.1007/BF02564633
- William M. McGovern, The adjoint representation and the adjoint action, Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, Encyclopaedia Math. Sci., vol. 131, Springer, Berlin, 2002, pp. 159â238. MR 1925831, DOI 10.1007/978-3-662-05071-2_{3}
- A. L. Onishchik and Ă. B. Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites. MR 1064110, DOI 10.1007/978-3-642-74334-4
- D. I. Panyushev, Orbit spaces of finite and connected linear groups, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 1, 95â99, 191 (Russian). MR 643895
- Dmitrii I. Panyushev, Complexity and nilpotent orbits, Manuscripta Math. 83 (1994), no. 3-4, 223â237. MR 1277527, DOI 10.1007/BF02567611
- Dmitri I. Panyushev, A restriction theorem and the PoincarĂ© series for $U$-invariants, Math. Ann. 301 (1995), no. 4, 655â675. MR 1326762, DOI 10.1007/BF01446653
- Dmitri Panyushev, On homogeneous spaces of rank one, Indag. Math. (N.S.) 6 (1995), no. 3, 315â323. MR 1351150, DOI 10.1016/0019-3577(95)93199-K
- D. I. Panyushev, Complexity and rank of actions in invariant theory, J. Math. Sci. (New York) 95 (1999), no. 1, 1925â1985. Algebraic geometry, 8. MR 1708594, DOI 10.1007/BF02169155
- G. Pezzini. Wonderful varieties of type C. Ph. D. thesis, UniversitĂ di Roma âLa Sapienzaâ, 2003.
- V. L. Popov, Criteria for the stability of the action of a semisimple group on the factorial of a manifold, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 523â531 (Russian). MR 0262416
- Ă. B. Vinberg and V. L. Popov, Invariant theory, Algebraic geometry, 4 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 137â314, 315 (Russian). MR 1100485
- Gerald W. Schwarz, Representations of simple Lie groups with a free module of covariants, Invent. Math. 50 (1978/79), no. 1, 1â12. MR 516601, DOI 10.1007/BF01406465
- Gerald W. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Ătudes Sci. Publ. Math. 51 (1980), 37â135. MR 573821, DOI 10.1007/BF02684776
- A. V. Smirnov, Quasiclosed orbits in projective representation of semisimple complex Lie groups, Tr. Mosk. Mat. Obs. 64 (2003), 213â270 (Russian, with Russian summary); English transl., Trans. Moscow Math. Soc. (2003), 193â247. MR 2030190
- A. A. Sukhanov, The description of observable subgroups of linear algebraic groups, Mat. Sb. (N.S.) 137(179) (1988), no. 1, 90â102, 144 (Russian); English transl., Math. USSR-Sb. 65 (1990), no. 1, 97â108. MR 965881, DOI 10.1070/SM1990v065n01ABEH001141
- D. A. TimashĂ«v, Classification of $G$-manifolds of complexity $1$, Izv. Ross. Akad. Nauk Ser. Mat. 61 (1997), no. 2, 127â162 (Russian, with Russian summary); English transl., Izv. Math. 61 (1997), no. 2, 363â397. MR 1470147, DOI 10.1070/im1997v061n02ABEH000119
- D.A. Timashev, Homogeneous spaces and equivariant embeddings. Preprint (2006), arXiv:math.AG/0602228.
- Ă. B. Vinberg, Invariant linear connections in a homogeneous space, Trudy Moskov. Mat. ObĆĄÄ. 9 (1960), 191â210 (Russian). MR 0176418
- Thierry Vust, OpĂ©ration de groupes rĂ©ductifs dans un type de cĂŽnes presque homogĂšnes, Bull. Soc. Math. France 102 (1974), 317â333 (French). MR 366941, DOI 10.24033/bsmf.1782
- Thierry Vust, Plongements dâespaces symĂ©triques algĂ©briques: une classification, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 2, 165â195 (French). MR 1076251
- B. Wasserman, Wonderful varieties of rank two, Transform. Groups 1 (1996), no. 4, 375â403. MR 1424449, DOI 10.1007/BF02549213
- B.Yu. Weisfeller. On a class of unipotent subgroups of semisimple algebraic groups. Usp. Mat. Nauk 22(1966), no. 2, 222-223 (in Russian).
- H. Weyl, Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. I, Math. Z. 23 (1925), no. 1, 271â309 (German). MR 1544744, DOI 10.1007/BF01506234
Bibliographic Information
- Ivan V. Losev
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology. 77 Massachu- setts Avenue, Cambridge, Massachusetts 02139
- MR Author ID: 775766
- Email: ivanlosev@math.mit.edu
- Received by editor(s): August 7, 2007
- Published electronically: January 5, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 14 (2010), 9-69
- MSC (2010): Primary 14M17, 14R20
- DOI: https://doi.org/10.1090/S1088-4165-10-00365-1
- MathSciNet review: 2577655