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QUANTUM ALGEBRAS AND SYMPLECTIC REFLECTION
ALGEBRAS FOR WREATH PRODUCTS

NICOLAS GUAY

ABSTRACT. To a finite subgroup I' of SL2(C), we associate a new family of
quantum algebras which are related to symplectic reflection algebras for wreath
products S; T via a functor of Schur-Weyl type. We explain that they are
deformations of matrix algebras over rank-one symplectic reflection algebras
for I" and construct for them a PBW basis. When I' is a cyclic group, we
are able to give more information about their structure and to relate them to
Yangians.

1. INTRODUCTION

The theory of symplectic reflection algebras was introduced a few years ago
in the seminal paper [EtGi| of P. Etingof and V. Ginzburg. Since then, applica-
tions have been found in representation theory and in algebraic geometry; see, e.g.,
[Bo, [EGGO] [GoStl, [GoSm]. One important example of such algebras is given by
the rational Cherednik algebras [Ch2], [GGOR], [BEG] associated to a complex re-
flection group W acting on the symplectic vector space h @ h*, h being its reflection
representation. A large class of symplectic reflection algebras are those associated
to wreath products I'; = S T' = I'*! x S for I a finite subgroup of SLy(C).

In this paper, we introduce a new family of quantum algebras that we call I'-
deformed double current algebras (I-DDCA). They are flat deformations of the
enveloping algebra of an enlargement of E[,L((C[u, v] xT), the universal central exten-
sion of s, (C[u, v] xT"). They can also be viewed as flat deformations of $igl,, (A, xT")
where A; is the first Weyl algebra. We construct a PBW basis for I-DDCA by
using a Schur-Weyl functor which relates them to symplectic reflection algebras for
T;. WhenT = Z/rZ, we are able to give a second definition of I-DDCA by realizing
them as certain subalgebras of a cyclic version of affine Yangians.

One can consider the general problem of studying spaces of maps X — g from
an algebraic variety to a semisimple Lie algebra g. When X is smooth and of dimen-
sion one, this leads to current Lie algebras g@¢Clu], loop algebras g@¢cClu, u~!] and
their universal central extensions, the affine Lie algebras. When X has dimension
two, the most natural case to consider is the two-dimensional torus X = C* x C*,
but two simpler cases are X = C x C* and X = C2. Quantizations of the corre-
sponding enveloping algebras are known as quantum toroidal algeras [GKV], affine
Yangians and deformed double current algebras [Gu2], respectively. We may also
consider singular varieties, and one of the simplest example is a Kleinian singularity
C2/T. We are thus led to consider the Lie algebra g ®c C[u,v]' and its universal
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central extension. We can also follow one of the main ideas in [EtGi] and replace
the ring of invariants Clu, v]" by the smash-product C[u, v] x T since it is believed
by ring theorists that the latter encodes more the geometry of the quotient C2/T
and of its (minimal) resolution of singularities than the former. This is another
motivation for studying I'-DDCA.

The representation theory of quantum toroidal algebras was studied in [Hell [He2)
VaVall, [VaVa2] and, via geometric methods, in [VaVa3|. We hope that understand-
ing the representations of I'-DDCA will eventually lead to a better understanding
of quantum toroidal algebras and affine Yangians, but we will also exhibit new
phenomena which do not occur for these two types of algebras.

After recalling the definition of symplectic reflection algebras for wreath prod-
ucts, we devote two sections to the Lie algebras sl,(Clu,v]) and sl (C[u,v] x I),
giving presentations in terms of families of generators and relations which are use-
ful later on. The main idea is to obtain presentations with only finitely many
generators and relations of low degree. The principal results here are Lemma
and Lemma Il The latter is a modified version of a theorem of C. Kassel and
J.L. Loday [KaLo] which is useful for our purposes. We also mention some re-
sults pertaining to the first cyclic homology group of the smash product Clu,v] x T
since this space gives the center of the universal central extension s, (Cu,v] x T).
The following section is simply devoted to defining the I'-deformed double current
algebras D ,,. Section [(] contains one of the main results of this paper: we ex-
plain how to extend the classical Schur-Weyl functor to the double affine setup and
when it yields an equivalence of certain categories of modules; see Theorem
When A = 0, the I'-deformed double current algebras are enveloping algebras of
Lie algebras closely related to sl,, with entries in a rank-one symplectic reflection
algebra for I': this is the content of section [ll Section ] contains our second main
theorem: we prove that the associated graded ring of D5, is isomorphic to the
undeformed ring Dj_ },_o, whence the name PBW property by analogy with the
classical Poincaré-Birkhoff-Witt theorem.

The second half of the paper (all of section [@]) is devoted to the special case
I' = Z/dZ. The symplectic reflection algebras for the wreath product (Z/dZ)*! x
S, are rational Cherednik algebras, so they afford a Z-grading. This explains in
part why we can obtain more results in this specific case. We start by studying
certain degenerate affine Hecke algebras associated to I'; and then extend the results
of [Gul] to the double affine trigonometric setting where we have a functor of
Schur-Weyl type (see Theorem [0.1]) between modules for a localization of a rational
Cherednik algebra for I'; and a certain algebra which turns out to be isomorphic
to a Yangian for sl,4 (see Corollary [@3]). The main goal of section [ is reached in
subsection where we prove that deformed double current algebras for Z/dZ can
be realized as subalgebras of certain loop Yangians: see Theorem 0.3l This provides
another set of generators, which might be convenient in the study of representations.

Throughout this paper, we will assume that n > 4: analogous results most
probably hold for n = 2,3, but some definitions may involve more complicated
relations and certain proofs would have to be modified accordingly.
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2. SYMPLECTIC REFLECTION ALGEBRAS FOR WREATH PRODUCTS

Isomorphism classes of finite subgroups of SLs(C) are known to be in bijec-
tive correspondence with affine Dynkin diagrams of type A,D,E via the McKay
correspondence. We will denote by I' such a subgroup. For instance, the group
corresponding to the Dynkin diagram of type ﬁr_l is the cyclic group I' = Z/rZ.
In this section, we recall a few definitions and facts about symplectic reflection
algebras for the wreath product I'; = S;T" of I with the symmetric group 5;. Let
w be a nondegenerate symplectic form on U =2 C? and choose a basis {z,y} of U
such that w(x,y) = 1. We will denote by {z;,v;} the same basis of C?, this time
viewed as the i*" direct summand of U®!. Note that I'; acts on U®.

The definition of a symplectic reflection algebra depends on two parameters:
tcCandc=k-id+ nyéF\{id} cyy € ZI', which is an element in the center ZI" of
C[I']. We have adapted the definition of the symplectic reflection algebra Hy c(I';)
from [GaGi]. For v € ', we write ~; for (id,...,id,~,id,...,id) € I';, where 7 is in
the i** position.

Definition 2.1. The symplectic reflection algebra H; o(T';) is defined as the algebra
generated by the two sets of pairwise commuting elements xq,...,x;,y1,...,y and
by 7 € I'; with the relations:

(1) moxiom t=1(2), ToyioT P =7(y), i=1,..., L,V Tl
!
K — .
(2) [xivyi]:t+§zztfiﬂwjl+ Z i, 1=1,...,1,
;;11 yel ver\{id}

where 0;; € S is the permutation ¢ <+ j. For i # j and any wh w? € U w!
span{z;, y; }:

K _
(3) [wi, w}] = 3 ZW(V(W1)7W2)U@%% h
yer
To simplify the notation, we will write w3 = w(y(z),z),wy = w(y(y),y), WY =

w(y(@),y).
It is possible to filter the algebra H, c(I';) by giving degree 1 to the generators

xi,vi, 1 <i <1, and degree 0 to the elements of I';. This filtration will be denoted
Foe(Hyc(T)) and the corresponding associated graded ring gr(Hy.c(I;)).

Theorem 2.1 (PBW Property, [EtGi|). The canonical map Hi—pc=0(Ii) —
gr(Ht’C(Fl)) s an isomorphism.
3. DOUBLE CURRENT ALGEBRAS

Before defining I'-deformed double current algebras in section Bl we need to
prove a series of lemmas for the Lie algebra sl,,(Clu, v] x I'), the universal central
extension of sl,(Clu,v] x I'). In this section, we treat the case I' = {id}. We



QUANTUM ALGEBRAS AND SYMPLECTIC REFLECTION ALGEBRAS 151

will need to assume that n > 4 in this section and, a fortiori, for the rest of the
paper. The first lemma is similar to proposition 3.5 in [MRY] and should admit
an analog for other semisimple Lie algebras; however, we doubt that Lemma
admits such a generalization, except perhaps by adding a few relations. We start
with a theorem which gives a description of sl,, [u,v]. We will denote by Q1(C?) the
space of polynomial 1-forms on the affine plane C? and by d(C[u,v]) the space of
exact 1-forms on CZ2.

Theorem 3 1 ([Kaj) The Lie algebra sl,[u,v] is isomorphic to the Lie algebra
1(c?)

sl [u,v] @ m with the following bracket (where (-,-) is the Killing form on
sl ):
[m1®p1, ma®pa] = [m1, ma|@p1p2+(m1, ma)prdpz, Vmi,ma € sly, p1,p2 € Clu,v]

Q'(c?)
and the elements of TCla]y e central.

We denote by @H = (¢ij)o<i,j<n—1 the n x n Cartan matrix of affine type
A\n_li

2 -1 0 0o -1

-1 2 -1 0 0

o -1 2 -1 0 0
anfl -

0 o -1 2 -1 0

0 -+ - 0 -1 2 -1

1 0 -+ - 0 -1 2

The set of roots of sl,, will be denoted by A = {e;;|1 < i # j < n} with the choice
of positive roots denoted by A" = {a;;|1 <i < j < n}. The longest positive root
0 equals a1y,. The elementary matrices will be written E;;, H; = Ej; — Eiqq i41 for
1SZ§’I’L—1&HdHZJ=E“—EJJ WesetE;r: i,iJrlvEZ = 1+1)Z71Si§n—1.

The following is lemma 2.5 in [Gu2].

Lemma 3.1. The Lie algebra s, [u,v] is isomorphic to the Lie algebra U which is
generated by the elements X”,H”,ngr, 1 <i<n-—171 >0 which satisfy the
following relations:

(4) [Hir, Hj,s]
[ 0,0, X }
Xl
oo

1<ij<n—1 r,s >0,
:I:c” V1<z<n—1 0<j<n—-1,r>0,
+ +
[ zr+17X ] [XZ’I‘7Xj s+1]
[HM,XJS_H}V1<Zj<n71,r,520,

(5) Ry

[ H“—Ha

7,8
(6) [X(;rr’ (;r]: [ zr+l7X ] [er7XOS+1]
[zr—&-lX }:[H”,XOS+1}V1<Z<TL—1rs>0
(7) [ ”,XJS]Z(SUH”JFS,VO<z<n—1 1<j<n-1,7:5>0,
:I:

() [X[0 (X5 X5 =0Vr>0ifcij =—1, (X0, X5] =0VYr >0 ifc;; = 0.

Remark 3.1. In (8), when ¢ = 0 or j = 0, we have defining relations only in the +
case.
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We will need a simpler set of generators and relations for the Lie algebra sA[n [u, v],
whence the importance of the next lemma, which is lemma 2.7 in [Gu2], except for
a minor difference.

Lemma 3.2. The Lie algebra sl,, [u,v] is isomorphic to the Lie algebra t which
is generated by the elements X”,Hi,T,X({T, 1<i<n-—1,r=0,1 satisfying the
following relations:

(9) [HM,Hjs}zo 1<ij<n—1 rs=0,1,

[Hzo, ] +ei; X, 1<i<n—-1,0<j<n-1r=01,
(10) [X[5%, X:5] =0, [Xprfo] (X0, X5

[Hzla } [HZOa ] 1<Z7]Sn_la
(11) [X007X01]_0 [X;FUXOO] [X;TO’X(;CIL

H; 4 } [Hlo,X()l] 1<i<n-—1,

[
(12)[ 0,7 jO]_(Sszzr_[X:FO;X ]V0<Z<TL—1 ]_<]<n_1,r,_01
(13) [X%, (X5, X)) =0 if ey = —1,
[Xi%O’Xfo}:()ifcij:(),Ogi,jgnfl.

An isomorphism & — s, [u,v] is given by
XH e Ef@u Hi, s Hi@v for 1<i<n—1,X{, — Ey@uw’, r=0,1.
We will need a corollary of the previous lemma which gives a fourth presenta-

tion of sl,, [u,v]. It is an immediate consequence of Lemma 3.2 since we are only
eliminating XS: ; from all the relations, so we will use the same letter &.

Lemma 3.3. The Lie algebra ;[ [u,v] is isomorphic to the Lie algebra € which
is generated by the elements Xz - H, T,Xoo,l <i<n-—1,r=0,1 satisfying the
following relations:

(14)  [Hip,Hjs]=0,1<i,j<n—-1,7s=0 orl,

[H; ] :I:c”XJ7,1<zy<n71r701
w5 Xk, X11 0, [XE, X = (X, X&),

[Hia ] [Hio X a, V1<ij<n-—1,
(16) [Xl 1, ]o,xot)n

[Hy ] [nll, a0l V1<ij<n-—1,
(17) [ 0s [ Hn— 11,X00H =0

[Hzo,Xoo]szoXoo, [Hll,XOO]fO ifi#1,n—
(18) [Xjra ]_51]H’L r+s; “Hn—l,raXS_O} X ]_0

VOSZSn—l,lSan—l,OSr—l—sSl (r=014fi=0)
(19)  [X75. X5, X5 =0 if iy = -1,
(X750, X0 =0ifcij =0, 0<d,j <n—1.

In the previous lemmas, the elements X=* H; , with i # 0 generate a Lie sub-

ZT"

algebra which is isomorphic to sl,[v], whereas those with » = 0 along with XS: 0
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generate an isomorphic image of sl [u]. We would like to end this section by giving

one last definition of sl [u, v] in which these two algebras play a more symmetric
role, but before that we need to introduce one more lemma (which is probably
known to other people).

Lemma 3.4. The Lie algebra s, [v] is isomorphic to the Lie algebra f generated by
elements Egp € sl,,, Eqp(v) for 1 < a # b < n which satisfy the following relations:

[Eaba Ebc(U)} = Eac(v) = [Ead(’l}), Edc]a
[Eab(0), Ene(v)] = [Eadlv), Eaclv)] fa b £ cFard# e
[Eap Eca(v)] = 0 = [Eap(0), Eca(v)] i a £b#c £ d £ a.

Proof. We want to define elements E.,(v¥)Vk > 2,1 < a # b < n, by setting
inductively Eq;(vFt1) = [Eqe(v), Ey(vF)] for some ¢ # a,b. This does not depend
on the choice of ¢, for if d # a,b, ¢ and [2]]) is satisfied for k instead of k + 1, then:

[Eaa(v), Eap(v*)] = [Ead(v), [Edes Ecy(v")]]
= [[Ead(v), Eac), Ecb(v7)] = [Eac(v), Ecy(vF)].
We have to show that
(20) [Eab(v)), Epe(v7)] = Ege(@'™) if i+ j=k+1l,a#b#c#a
and
(21)  [Eap(v),Ecq(v?)] = 0if i +j =k +1
ori=1,7=k+1, when a #b+# c#d+# a.

We proceed by induction on k, the case k = 0 being true by the definition of f.
Assume that i +j = k + 1. Suppose that a # b # ¢ # a and choose d # a,b, c.
First, suppose that ¢ > 1.

[Eab(v"), Epe (v7)] = [[Eaa(v), Eap (0" )], Epe(v”)] =[Eaa(v), Ege(v™ )] =Eqe(v'7).
Ifi=0,j=Fk+1, then
[Eabs Eve(v" )] = [Eap, [Epa(v), Eac(v)]] = [Eaa(v), Eae(v")] = Eae(v* ).

We have established (20), so let us turn to Z1I)). If a # b, ¢ # a, choose d # a, b, c.
Then, if i + j = k + 1 and, without loss of generality, j > 2,

[Eab(vi)a EaC(Uj)] = [Eab(vi)a [Ead(v)a EdC(Uj_l)]] =0

by induction. Similarly, [Eqp(v?), Eap(v?)] = 0ifi+j = k+1, and, ifi = 1,j = k+1,
we can show that [E.p(v), Eqe(vFT1)] = 0 = [Ep(v), Eap(vF 1))
If a,b,c,d are all distinct and i +j =k + 1,1 <4,j <k, then

[Eab(v"), Eca(v”)] = [Eap(v"), [Ect(v), Epa(v! )] = [Ecp(v), Eqa(v )]
= [Ecb(v)v [Eac‘(”Fl% Ecd(vj)u = _[Eab(vi)v Ecd(vj)]-

Comparing the first and last terms, we see that [Eqp(v?), Eca(v?)] = 0. If i = 0,5 =
k41, then

[Eab, Eca(v"™)] = [Eap, [Ect(v), Epa(v")]] = [Ect(v), Eqa(v™)] =0

by the previous case. The same argument works if i =k + 1,5 = 0.
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Finally, if again a, b, ¢, d are all distinct, we have

[Eab(v), Eca(v™*)] = [Eap(v), [Eea(v"), Eaa(v)]] = ~[Ect(v"*"), Eaa(v)]
= —[[Eca(v""),Eap), Eaa(v)]] = [Eca(v" ™), Eap(v)]-
Comparing the first and last terms shows that [Egp(v), Eca(v*+1)] = 0. O

Lemma 3.5. The Lie algebra ET[n[u,v] is isomorphic to the Lie algebra t that is
generated by the elements Eqp € sly, Eqp(w),Eqp(v) for 1 < a # b < n with the
following relations: For any wi = aju + byv,we = asu + bov,a;,b; € C,

(22) [Eab, Eve(w1)] = Eac(wi) = [Eap(w1), Epe),
(23) [Eab(w1), Eve(w2)] = [Eaa(wi), Eac(w2)],

[Eap(w1), Eve(wz)] = [Eap(w2), Epe(wr)] if a #b# c # a # d # c,
(24) [Eab(UJl)v Ecd(w2>] =0= [Eabv cd(w1>] ifa#b#c#d#a.

Proof. We can define an epimorphism £ — t by the formulas

X 1 — E; zJrl( ) ijl — Ei+1,i(v); Hi,l — Hi)iJr]_(U) forl <i<n-— 1,
X(j:O — Enl(u).
We have to check that this respects the relations (I4)—(I9). We will explain why
this is indeed the case for the first equation in (I4]), the first and second one in (I6)),
the first one in ({I7) and the second one in (I§]), but before we do this, we need to

deduce a few consequences of the relations in this lemma.
For a # b, we define Hgp(w) by Hap(w) = [Eap(w), Epg]. Choose ¢ # a, b, so

Hab(w) = [[Eaa Ecb(w>]; Eba] = _[Eba Ecb(w>] + [Eac; Eca(w)]
= —[Epe; Eeo(w)] + [[Eap, Eve), Eca(w)] = [Eap, Epa(w)] = —Hpa(w).

Starting from [Eqp(w1), Epe(w2)] = [Ead(w1), Eqe(w2)] with a, b, ¢,d all distinct and
applying [-, Epq] gives the relation

(25) [Hap(w1), Epe(wa)] = —[Epa(wi), Eac(w2)].
Although we needed to assume that a, b, ¢, d were distinct to deduce this equality,
it is also true that [Hap(w1), Epe(w2)] = —[Epa(w1), Eae(w2)] if a, b, ¢ are all distinct,
due to relation (23)).

Similarly, [Hap(w), Epe(w)] = —[Epa(w), Eqe(w)] and commuting both sides with
E.. yields

[Hab(w), Epa(w)] = [Eca(w), Eve(w)] — [Epa(w), Eda(w)] = —2[Epa(w), Ega(w)].

We now apply [Eqp, -] to both sides of this equation to get
(26) [Eas(w), Epa(w)] + [Epa(w), Eap(w)] + [Eaa(w), Eqa(w)]-

This is a useful equation since it helps us deduce the following for a, b, ¢ all distinct:

[Hab(w); Hbc(w)] = HE ( ) Eba]; [Eba cb( )]]
= HE ( ) Eba}v Eco ( )] [Ebcv [Eab(w)a E. ( )]]
(27) = —[Eoc(w), Ecp(w)] + [Eac(w), Eca(w)] — [Eap(w), Epa(w)] = 0.
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The first equation in (I4) is now an immediate consequence of [27). Applying
[Elg, ] to 0 = [En_l,l(u), Egl(’U)] giVGS 0 = 7[En_172(’u), Egl(v)]+[En_171(u), ng(’l))].
Therefore,

—[H12(v), En—1,1(w)] = [En—1,2(u), E21(v)]
= [En—l,n(v)a Enl(u)} = [Hn—l,n(v)a En—l,l(u)}a

the last equality being a consequence of applying [-,Enn—1] to 0 = [En—1.,(v),
En—1,1(u)]. We now use [E,, ,—1,] again to obtain

— [Hi2(v), En1(w)] = [Hn—1,n(v), En1 (u)] + 2[Ep n—1(v), En—1,1(u)]
= [anl,n(U% Enl(u)] + 2[Hn,n71(v)v Enl(u)] = _[anl,n(v)v Enl(u)]~

This implies that the second relation in (1) is respected. As for the first relation
in (I6) when j =n —1 or j =1, it is a consequence of (28] with w; = v, ws = w.

The first relation in (I7) and the second one in ([I8)) follow also from (25]) and
from ([24).

To prove that it is an isomorphism, we would like to construct an inverse £&. We
do this by using Lemma [3.3] which identifies £ with the Lie algebra in Theorem 3.1
We set £(Eqp(u)) = Eqp @ u and E(Eqp(v)) = Eqp @ v. Clearly, this defines a Lie
algebra map t — g[n [u,v]. Taking the composite with the map & — t above yields
a homomorphism & —» sl,, [u, v] which is the isomorphism given in Lemma B3] (see
the formulas after Lemma [3.2)). Therefore, £ — t. O

4. THE UNIVERSAL CENTRAL EXTENSION OF s, (Clu,v] x T

For an arbitrary associative algebra A, sl,,(A) is defined as the space of matrices
in gl,,(A) with trace in [A, A]. This Lie algebra is perfect, so it admits a universal
central extension whose kernel is isomorphic to the first cyclic homology group
HC;(A) [KaLo]. When A is the group ring A = C[I'], HC;(A) = 0 (see chapter 9
in [We]), so we conclude that sl,, (C[I']) is universally closed. Therefore, Theorem
1] gives a description of sl,(C[I']). We will need to use the following theorem of
C. Kassel and J.L. Loday in the case A = Clu, v] xI'. We will compute later in this
section HCq (Clu, v] x T).

Theorem 4.1 ([KalLo]). Let A be an associative algebra over C. The univer-
sal central extension sly,(A) of sl,(A) is the Lie algebra generated by elements
Fup(p),1 <a#b<n,pe€ A, satisfying the following relations:

(28) Fop(tip1 + tap2) = t1Fap(p1) + taFup(p2) ti,t2 € C,p1,p2 € A,

(29) [Fab(p1), Foe(p2)] = Fac(p1p2) if a # b # ¢ # a,

(30) (Fab(p1), Fea(p2)] =0 if a #b# c # d # a.

We will need to simplify Theorem [Jlwhen A = Clu,v] x T'. A generalization of

the following lemma, under the extra condition that n > 5, is given by proposition
3.3 in [Gu3].

Lemma 4.1. The universal central extension ;[n((C[u,v] x ') is isomorphic to the
Lie algebra ¢ generated by elements Eqp(w), w = tu+ sv,Egp(),1 <a#b<mn, €
I',s,t € C such that the following relations hold: If a #£ b # ¢ # a # d # ¢ and
w; = tiu + s;v,0=1,2:

(31)  Eap(w) = tEap(u) + sEap(v), [Eap(w1), Bpe(ws)] = [Eaa(wz), Eac(wi)];
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(32)  [Eas(7), Eve(w)] = [Eaa(y(w)), Eac()], [Eas(11); Eve(12)] = Eac(172)-
Ifa#b#c#d#a:
(33) [Eab(w1), Eca(w2)] = 0 = [Eap(71), Eca(72)] = [Eas(7), Eca(w)].

Proof. We will introduce elements E,p(g) for any ¢ € Clu,v] x T' and show that
they satisfy the relations in Theorem [l When ¢ € Clu,v], the elements E.;(q)
can be defined using the map s, [u,v] — ¢ given by Lemma and Theorem
[Tl in the case A = Clu,v]. Suppose ¢ = py,p € Clu,v],y7 € I'. We can assume
that p = u®v®. Set e = e; + eo; we will use induction on e. Choose a # b and
¢ # a,b; set Egp(q) = [Eac(p), Eco(y)]. We claim that this definition of E,;(q) does
not depend on the choice of ¢. (This is true when the degree of p is one according
to (B2).) Indeed, suppose that d # a,b,c and e1,e5 > 1 (the cases e; =0 or e; =0
are similar) and write E,.(p) = [Eqq(v), Ege(uv®2~1)]. Arguing by induction, we
can assume that [Egp(u®v°271), Egp(7)] = 0. Then

Eab(q) = [[E ( ) Edc( 61U6271)]7Ecb(7)] = [Ead(v)7 [Edc(u€1v6271)7ECb(7)H
_ [ wa(0). [Eac(uv*™), [Eaa Ean()]]

Ead Edc v 1); Ecd]a Edb(fy)]i|

= [Ead( v°2), Eap ()] + [[Eac(uv®> ™), Ecal, Eap(v7)]
= [Ead(UeWCQ)» Ean(7)]

since [Ege(u®v®271), Eqp(vy)] = 5[[Hae(w), Eqe(ue 1o~ )], Eqp(vy)] = 0 by in-
duction.

Let us assume that [Eqp(p171)s Epe(P272)] = Eac(p171(p2)7172) for any a # b #
¢ # a and also that [Eqp(p171), Eca(p2y2)] = 0 for any a # b # ¢ # d # a, any
7,72 € I' and any p1,p2 € Clu,v] of total degree < e. We want to prove that the
same relations hold when the total degree of py, ps is e.

Step 1: Suppose that a,b,c,d are all distinct and e; > 1. Set p = u®~1v°2, so
p = up. Using induction, we get

[Eab (1), Eve(p)] = [Ean(7), [Epa(u), Edc(@]] = [[Eab(7); Epa(w)], Eac(P)]

= [[Eap(v(u)) Ebd ],Eac(D)]

= [Ear(7(w)), (’Y) Eac(D)]] = ), Enc(v(p)7)]
[Eap(v(u)), Ebd(’)’(ﬁ)) c(’Y)H = [[Eab( (), Eva(7(P))], Eac(7)]
= [Eaa(7(uP)), Eac(7)] = Eac(v(p)7)-

Step 2: Assume that a # b #% ¢ # d # a and e; > 1. There are three sub-
cases to comsider: a,b,c,d are all distinct, a = ¢, b = d. In the first subcase,
[Eab(p), Eca(7)] = 3 [[Hab (), Eas(P)], Eca(y)] = 0 by induction. In the second sub-

case, choose e # a,c,d; then [Ew(p),Bad(7)] = [[Eac(u), Ecp(P)], Eaa(7)] = 0 by
induction since deg(p) < e. The third subcase is similar to the second one.

Step 3: Choose a, b, ¢, d all distinct. We know from step 2 that [Eup(p1), Eac(72)]
=0, so
[Eab(P1), Evc(p2v2)] = [Ean(p1), [Eva(p2), Eac(v2)]] = [[Ean(p1), Eva(p2)], Eac(y2)]
= [Eaa(p1p2), Eac(72)] = Eac(p1p272).
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Step 4: Again, suppose that a, b, ¢, d are all distinct. Then
[Eab(P171), Ebe(p2)] = [[Eaa(p1), Ean(11)], Eve(p2)] = [Eaa(p1), [Ean(m1), Eve(p2)]]
= [Ead(p1), Edc(71(P2)11)] = Eac(pim1(p2)71)-

The last equality is a consequence of step 3.
Step 5: Assume that a # b # ¢ # d # a. As in step 2, there are three subcases
to consider. In the first subcase, using step 2 twice, we get

[Eas(p171), Eca(72)] = [[Eaa(p1); Eas(11)]: Eca(72)] = —[Ead(p1), Ect(7271)] = 0.

In the second subcase, choosing e # a, b, d, we get [Eqp(p171), Eac(72)] = [[Ea@(pl),
Eeb(71)], Ead(vg)] = 0. The third subcase is similar to the second one.
Step 6: Suppose that a, b, ¢, d are all distinct. Then

[Eab(P171), Eve(p272)] = [Ean(p171), [Eva(p2), Edc(72)]]
= [[Eas(p171), Eba(p2)], Eac(72)]
= [Eaa(p171(p2)71), Edc(72)]
= [[Eab(P171(p2)), Epa(711)], Eac(72)]
= [Eas(P171(P2)); [Eva(71), Eae(72)]]
= [Eap(P171(P2)), Eve(7172)]
= Eac(pfh (p2)’71’72)-

Step 7: Finally, suppose that a # b # ¢ # d # a and q1 = p171, g2 = p2y2- Asin
steps 2 and 5, there are three subcases. In the first case,

[Eab(q1)7 Ecd(q2)] = [[Eac(ql)7 Ecb}v Ecd(q2)] - [Ead(QIQQ)v Ecb]
= [[Eab(q1), Eva(q2)], Ecb] = —[Ean(q1), Eca(g2)]-

Comparing the first and last terms, we conclude that [Eqs(q1), Eca(q2)] = 0. In
the second case, suppose that a,b,d are all distinct and choose e # a,b,d. Then
[Eab(q1), Ead(g2)] = [[Eae, Eeb(q1)], Ead(g2)] = 0 by the previous subcase and step 2.
The third case can be handled as the second one. Il

As recalled earlier, the center of ;[n((C[u,v] x I") is known to be isomorphic to
HCy(Clu, v] xT); see [KaLo]. Consequently, the following proposition will be useful:

Proposition 4.1. The first cyclic homology group of Clu,v] x T is isomorphic to
QY(C[u,v))T' /d(Clu,v]Y), the quotient of the space of I'-invariant 1-forms on the
complex affine plane by the space of exact forms coming from I'-invariant polyno-
mials.

Proof. Tt is proved in [Fa] that the Hochschild homology of C[u,v] x T is given by:

HHo(C[u, v] x T') = C[u, v]" @ CcT—1,
HH; (Clu, v] x T) = (C[u,v] ®c U)" where U = span{u, v} = C?,
HH,(Clu,v] x T) 2 C[u,v]", HH;(Clu,v] x T') =0 for i > 3.

Here, cl(T") is the number of conjugacy classes of I". There exists an exact sequence
HHo(Clu,v] x I') — HH;(Clu,v] x I') — HC1(Clu,v] x I') — 0 and the first

map is given by the differential d, the space Clu,v] ® U being identified with the
space of regular 1-forms on C2 = U. (]
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Proposition 4.2. The first cyclic homology group of Clu,v] x T' can be identified
as a vector space with Clu,v]".

Proof. The form w (see section [2)) allows us to identify Q!(C[u,v]) with the space
V of polynomial vector fields on C2. (We assume here that w(u,v) = 1.) There is a
contraction map V — Clu, v], so we can define a linear map O (Clu, v]) — Clu, v]
given explicitly by u®v"du — rusv" ! usv"dv — —su® 1", Since w is I-invariant,
this restricts to a surjective map Q1 ((C[u, v))I' — Clu, v)F and the kernel of this last
map is d(Clu, v])', which equals d(C[u, v]"). Thus, HC1(Clu,v]xT) = Clu,v]'. O

These two propositions suggest that it may be possible to relate the enveloping
algebra of sl, (Clu,v] x T') to 8gl, (A; x T'), where A; is the first Weyl algebra: this
is explained in section [71

In the last section, we will consider deformations of an algebra related to
Usl, (Clu, v] xT); namely, Usl, (Clu*?!, w] xT) when I’ 2 Z/dZ is cyclic acts trivially
on w and on u by &(u) = Cu, € being a generator of Z/dZ and ¢ a primitive d *-root
of unity. It is explained in [GHLJ that sl, (Clu®!,w] x T') = sl,4(C[s**, w]): this
follows from the isomorphism of associative algebras given in loc. cit. Clu™]xT =
My(C[s*1]), where s = u?. Tt follows that HCo(Clu®!,w] x I') = C[s*! w] =
Clu*!, ] and

1%

Ql((18i17Uﬁ) O +1
Let be the Lie algebra defined by the relations in Definition 0.5 when A =
0,8 = 0. The next proposition will be useful to understand the algebras in section
9

HC, (Clu*!, w] x T)

Proposition 4.3. The Lie algebra g is isomorphic to ;[n((C[uil,w] xT).
Proof. See proposition 4.4 in [GHL] and also [MRY]. An isomorphism is given by
For1<i<n-—1, XL — EjE ®@w'ej, Hirj— H; @ w'e;,

0,7,
X+

0rj = B ®w "uej, X,

omj Fr Bin @ w'u” le;,

HO,T’,j — Enn Qw" e; — E11 Quw" €541 + 50j8 w"ds.

Here, we identify the center of sl,, (C[u*!, w] x T with HC; (C[u*!,w] x T') as above.
O

Let a be the Lie subalgebra of g generated by sz’H”JvXS_m’X(IrH,j for

1<i<n—-1,r>0,0<j<d-1. Via the isomorphism g —)5[n((C[ o] « T,
we see that a contains sl,(Clu,v] x T') with v = u~'w. As we have mentioned
earlier, we are interested in deformations of the enveloping algebra of a Lie algebra
slightly bigger than sl,, (Clu,v] xT). The projection g — g/(>_ 1, Zd L H; 0j)=29
is injective on a (note that >, Zd " H,oj is a central element of g), so we

can view sy, (Clu,v] x T') as contalned in the Lie subalgebra a of g which is the
image of a under the prev1ous projection. The Lie subalgebra of g generated by

XfOJ,Hl)O’J,HQO)J, 00jforl <i<n—1,0<j<d-1islarger than sl,(Clu] xT').

(Here, denotes the image under the projection g — g.) For instance, Z?:_Ol fIi,O,J- =
Ei1(ej —ejt1) € sl,(Clu] x T'). (Note that span{e; —e;11/0 < j < d— 1} =
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@I_iC- ¢ C C[I].) In the last section, we will explain how [-DDCA in the
cyclotomic case are deformations of a.

5. '"-DEFORMED DOUBLE CURRENT ALGEBRAS

We introduce in this section a new family of quantum algebras which are defor-
mations of the enveloping algebra of an enlargement of ;[n((C[u, v] x T') and which
are related to symplectic reflection algebras for wreath products of I" via a functor
of Schur-Weyl type. (By enlargement of a Lie algebra g, we mean a Lie algebra
¢ which contains a.) Before defining them, we need to introduce the Lie algebra
gl,,(C[T']) which is the Lie subalgebra of gl,(C[I']) spanned by sl,(C[I']) and by
the elements E,q(y)Vy € T'\ {id},1 < a < n. The necessity to consider gl, (C[T)
instead of just s, (C[I']) will become clear in sections [6] and [71

We will use the following notation: given an algebra A and elements aj,as € A,
we will set S(aq,a2) = aras + asa;.

Definition 5.1. The I'-deformed double current algebra Df, with parameters

feCbeZlb=X-id+ Z’yel“\{id} by is the algebra generated by the elements

of gln((C[l"]),Eab(tlwl + taws) for 1 < a # b < n,ty,te € C,w,wy,wy € U which

satisfy Eqp(tiwy + tows) = t1Eqp(w1) + t2Eqp(w2) and the following relations: If

a#b#c#a+#d+#c,

(34) [Eab (’7)7 Ebc(w)}
[Eaa(7), Eac(w)]

[Ead(’\/(w))7 Edc(PY)]a
[Eab('y)’ Ebc(w)] = [Eac('y(w))a Ecc(')/)]v

(35) [Eap(w3), Bpe(w1)] = [Eaa(wi), Bae(w2)] + w(wi, w2)Bac (b + )
+ %w(wuwz)z > (S([Eab('y_l)aEij]’[ jis Ee(7)])
Neri,j—1

+ S([Eaa(7), Eijl, [Eji, Echl)]))

_% Z(W(V(wl)»u&) — w(wi, w2)) (Eop (Y1) Eac(v) 4+ Eaa(V)Eac(v ™).
ver
If a,b, c are all distinct, then [E..(7v), Eqp(w)] = 0, and if a # b # ¢ # d # a, then
[Eas(7), Eca(w)] = 0 and

(36) [Eab(wl)v Ecd(w2)] = % Z W(’Y(wl)v w2)S(Ead(’7_1)7 Ecb(PY))‘
~el’

Set b = 2 ver\fidy by, S0 b = b(A = 0). Let I:N)g,]B be the subalgebra of
Dg,b(/\:()) generated by the elements Eqp(w1), Eqp(ws), Eqp(y) for a # b. Lemma
[Tl says that 6220’1):0 is isomorphic to the enveloping algebra of ;[,L((C[u, vl x T).
When 3 =1,A =0 = by for v # id, Dj_, },_¢ is exactly the enveloping algebra of
gl (A1 2 I'), where A; is the first Weyl algebra. D;_,_¢ is the enveloping algebra
of a Lie algebra that we denote sl, (Clu,v] x I') and we have s, (Clu,v] x T') D
ﬁA[n((C[u, v] x T'). See section [ for more details.

When I' is the trivial group, Df,, is isomorphic to the algebra DY 5 in [Gu2]
(see also [Gul]). The main difference in the definitions of D}, and DY j is that
the former does not involve any Yangian. Actually, there does not seem to be any
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sensible notion of Yangian associated to I' in general, which, from a heuristic point
of view, is not surprising since, when I' is not cyclic, C? is not the direct sum of
two one-dimensional I'-invariant subspaces. When I is a finite cyclic group, we can
give another definition of D}, which involves Yangians: see section

By giving degree 0 to the elements of g~[ (C[I']) and degree one to Eqp(w),w € U,
we can define a filtration Fy on Dj,, such that Dj_g,,_o — grp(Dj4,). The PBW
theorem in section [} says that this canonical map is an isomorphism.

6. SCHUR-WEYL FUNCTOR AND EQUIVALENCE OF CATEGORIES

Given a right module M over Hy c(I';), we set SW(M) = M ®¢(s, (C")®'. We
would like to give SW(M) a structure of a left module over D . The action of E,p
is simply via the sl,-module structure on (C™)®!. Let us assume that u, v, z,y € U
are such that the map v — x,v — y is a I'-equivariant automorphism of the
symplectic vector space U, so that w(vy(u),v) = w(vy(x),y). In particular, {u,v} is
a symplectic basis of C2. We would like to let Eqp(w), Eap(y) € DX 45 act on SW(M)
in the following way:

!
Ewp(w)(m®v) = Z mwg @ EX (v), Ea(y)(m e v) Z my b @ EW)(v).
k=1

Here, wy, = tizr +toyr if w =tz +toy, v=1;, ® --- ®v;, € C" and
E((L’;) (V) =0, ® - Qs _, @ Egp(v3,) @iy, @ -+ @y,

These operators define a representation of D ;, on SW(M) if and only if the follow-

ing relations hold between ¢, ¢, \,b: A = &, by = ¢, 1 for y # id and § = t— 251
To prove our claim, we have to verify that the operators above satisfy the defining
relations of Df,,. We start by computing that, for a # b # c# a # d # ¢,

([Eab(w), Eve(u)] = [Eaa(w), Eae(u)]) (m @ v)

l
= > mlere; — e ® (E((I;)Eéf) - Ec(fd)Eéi)) (v)

l
K - _ ) (ke ) ok
— 5 S wtmonm;te (B ES - EOED) v)

ik=1~€l
J#k

l
=5 2 > wimy @ (BB - BYER) (v)
le;:kwel“

=—- Z Zw MYV ®Hl§d)E(k) =—- ZwIHbd JEac(v)(m @ V).

Jj;ékl yel’ 'yEF
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The computations are the same when wu is replaced by v and w7
w¥. Under the same assumption on a, b, ¢,d, we now compute:

([Eab(v), Eve(w)] — [Eaa(u), Eac(v)]) (m @ V)

is replaced by

1
= Z 1y — yezr) @ EX (v) + Z m(zk, y;] © Eﬁ)Eéf)(V)

J;ﬁk
l

— Y mlys ] @ BB (v)

jk=1

J#k

l

=Y m Z Do okt Y e | @ ER()

k=1 Js ;ékl vyer ~yel'\{id}

J,k=1~y€l
J#k

K _ k i
-3 Z wa’ym%vk 10’jk ® E((Ld)EC(lJC) (v)

Jk=1~y€D
J#k

=Eq. | t+ Z eyt (mev) ZZZﬂWﬂ ® EDER (v)

yel\{id} J;ﬁk ~vel e=1
l
K . _ j
D) > > witmyy @ EJER (v)
J,k=1~€l
ik

!
K - — k) (i
~3 E E W mey; '® E((id)E((LJC) (v)

=Eq | t+ Z eyt - %|I‘| (m®wv)
yel\{id}

+ZZ Y S(Eac(ry™),Ecc(m)(m@v)

~yeTl e=1,e#a,c

+ g > (S(Hab(7‘1)7 Eac(7)) +S(Hea(7): Eac(y 1)) +5 (Haa(7), Eac(v 1))

yel’

+ S(ch('}/_l)a EaC(V))) (m®v)
) Z ) (Ewp (v Eac(7) + Eaa(7)Eac(v ™)) (m @ V).

761“
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l

l
= Zm ($k71;1 - ’Vl;l’\/k(xk)) ® Eélz)(v) -+ E m[l'k;"/J ] ® E(b)El()f)( )
k=1 j k=1

j k
- Z myy i (2)] © BY B (v)

J#k
=0

since nglﬁyk(xk) = xk’ylgl in Heo(I) and vjo, = zxy;, Vy € T'if j # k. Exactly
the same computations work with v instead of u and in the case a = b or ¢ = d
with v # id.
Now, we will assume instead that a # b # ¢ # d # a:
[Ean(w), Eca(0))(m @ v) = Y mly;, 4] @ By B (v)
j?'fk
= — Zzw ’“mojk’yk’yj ®E(k)E(])( )

76FJ¢k

52 witmyy !t © B BYW)
vel j#k

—Zw YEw(7)Eaa(y H(m @ v).

yel’
The computations are the same for [Eqp(u), Ecq(u)](m@v) and [Eqp(v), Ecq(v)](mav)
with w? (resp. w?) instead of w?¥.
We can state what we have proved so far in this section, but before that we need
a definition.

Definition 6.1. A module over Dj}, is called integrable if it is a direct sum of
integral weight spaces under the action of h and is locally nilpotent under the
action of Eqp(w) for any 1 <a#b<n and any w € U.

Definition 6.2. A module over Dj,, is said to be of level [ if, as a module over
sl,,, it decomposes as a direct sum of irreducible sl,-submodules of (C™)®!.

Proposition 6.1. Suppose that A =k, 8 =1 — %'Fl — K and by = cy—1 for v # id.
Then there exists a functor SW : modR — Hio(Th) — modiL”t’l — D%, given by
SW(M) = M ®¢(s,] (C")®'. Here, modZL”t’l is the category of integrable left modules
of level [.

This proposition can be strengthened to yield a new generalization of the classical
Schur-Weyl duality theorem between sl,, and ;.

Theorem 6.1. Suppose that A=k, =1 — %'Fl — Kk and by = cy—1 for v #id. If
I+ 2 < n, then the functor SW yields an equivalence between the category of right
Hi.c(T1)-modules and the category of left modules over D3, which are integrable of
level 1.

The proof of this theorem will follow the same lines as the analogous result in
[Gul], [Gu2] (see also [ChPrl], [VaVal]). However, before proving it, we have to
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establish a similar result for I'; and sl,,(C[T']). (When I is the cyclic group Z/dZ,
a more general result was established in [ATY] in the context of cyclotomic Hecke
algebras and where sl,,(C[I']) = 5129 is replaced by gly,, @ - - @ glpn,.) We will need
the following lemma.

Lemma 6.1. If v =1v; ® - ®v;, is a generator of (C*)®! as a module over sl,
(e.g., if i # iy for any j # k), then m®@v=0= m =0.

Proposition 6.2. The functor SW : modg — C[I';] — mod}, — sl,,(C[I]) is given
by M — M®cis) (C™)®L which is an equivalence of categories of finite-dimensional
modules when [+ 1 < n.

Proof. Given a right I';-module M, we can put on M ®c(g, ((C”) a structure of
a left module over sl,(C[I']) by setting

!
Ewn(Y)(mev) = Z my, !t ® E((ZIZ) (v).
k=1

This extends the classical Schur-Weyl functor to mod p —C[I';] and mod}, —sl,, (C[T]).
The second part of the proposition requires more work; to prove it, we will follow
the approach and ideas in [ChPrI].

Suppose that [ +1 < n. Let N be a left sl,(C[['])-module which is of level I
as an sl,-module. Then N = M ®¢(g,] (C™)®! as a left sl,-module for some right
S;-module M by the classical case. We want to show that M is a right module over
the group I.

For1 <k <l set vI®) = 03®- - QU Qup QUpp1 Q- - - @y, where {v1,v9,...,0,}
is the standard basis of C™. Let w(*) be the same element of (C™)®! as v(*) except

that v, is replaced by v1. As in [ChPrl], we write w® for the element obtained

by permuting the factors of w*) by 7 € S;. The set {W‘(,—k)‘T € S} is a basis for the
subspace of (C")®! of weight \; = €; + - - - + ¢, where ¢; is the weight on diagonal
matrices given by Ej;; — d;;, so we can write

Ern(y)(mev®) = Zm @ wik
TES]

for some m, € M. This can be rewritten as E1,(7)(m@v®) = m/ @ w*) for some
m/ 6 M. By Lemmal[6.] above m' is unique, so there exists a linear endomorphism
TF of M such that m' = ¢2"(m) for all m € M.

One can show, exactly as in lemma 4.5 in [ChPrl], that Ei,(7)(m ® v) =
Sory ¢k (m) ®E£’:L)(v) for any v € (C™)®!. Instead of the quantized Serre relation
that they use, one should consider the relation [En,n—la [Enn—1, Eln(’y)]] = 0, which
is a consequence of [E1,(7), Enn—1] = [E1,n—2(7), En—2,n-1].

Similarly, it is possible to show also that, for any 1 < a # b < n, there exists an
endomorphism ¢77* € Ende (M) such that E,p(y )(m®v) S OFm)eER (v).
We claim that, for any choice of a # b, ¢ # d, (7 - i k. Suppose, for instance,
that b # d # a, Then Eq(v) = [Eas(7Y), Ebal, s

l
Eaa()(m®v) = [Eas(), Bsal(m @ v) = >_ (3 (m) @ B (v).
k=1
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Since this is true for any v € (C™)\,m € M, C;;k = C;&k- The other cases can
be treated similarly. Therefore, we can define (7* € Endc (M) unambiguously by
setting ¢(VF = C;’ék for any choice of a # b.
We can now show that setting m~y; = Cv_l’k(m) gives M a structure of a right
module over I';. We will prove the following relations:
1. (myp) = m(yY)g, Vv,7 € T.
2. (mye)y; = (my) e vy, Y €T if j # k.
3. (mojr)y; = (myk)oje, Y1 <j#k<I,Vyel.
(1): Set v=12®@ - QU QVp QU1 @ - Quand V=102 ® - Q up @ v1 ®
Vg1 ® - @ . Since [Epn—1(F71), Enc1.2(vH)] = Ern (7719 71), we obtain

[E1n-1(57), Bnc1n (v DM @ v) = ((myi) ) @V = E1n (319 )(m @ v).

This equality, along with Lemma[6.T] imply that (m~yg)3x = m(y9)k, which is what
we wanted.

(2): Suppose that 1 < j <k <[l Set v=13® - QU411 QUp QVj12Q - QUi &
Vp—1 QU1 & - - QU and v =13®-- RV +1 0V RVj42Q) - - - QUL QU QVE+1 Q- - - Q.
Since [E1n(5771),Ezn_1(71)] = 0, we get

0=[Ein(3 ") Ezn1(y (Mm@ v) = (m7k)7;) ® V — (mA;)%) @V

so, by Lemma I} (m)3; = (m;) 7.
(B3): Set v=120 @0 @v, ®Vj11 @ QU1 R V1 ® V1 @ @V
and v = 0,,(v); let ¥V be the same as v except that v, is replaced by v and set

V = 0;5(V). Then

(mojr)y; @V = En (77 1) (mojr @) = Epi (v 1) (&) = my @V = (myy)ojx @v.

Again, Lemma [6.1] allows us to conclude that (mojx)y; = (myk)oj.

Finally, one can check that the functor F' is bijective on sets of morphisms. [

Proof of Theorem 61l Let N be a left module over D} p, which is integrable and of

level I. Proposition says that N = M ®c(g, (C™)®! for some right I';-module
M. We have to extend this to a right module structure over H, (I';).

We can proceed exactly as in the proof of Proposition (mimicking the argu-
ments in [ChPrl]) to show that there exist endomorphisms ¢}’ € End¢(M) such

that Egp(w)(mev) = 22:1 ¢ (m) ®E((1’Z)(v). We proceed as in [Gu2] to show that
setting may = (i (m), my; = ¢ (m) turns M into a module over Hy ¢(I')).

Fix 1 <5,k <I,j#k. Choose v=uv; @ ®uv;, such that i, =2,i; =n — 1,
iy =r+2ifr<jr#ki,=r+1lifr>jr#k Setv=EYE | (v). On the
one hand,

(Ex, nfl(w2)En2(wl) — Ena(w1)Ern—1(w2)) (m @ V)
!

! !
:Zme w3 ®E§%_1E£f2)( Zme w, ®E(T) (S) ~1(v)

s=1r=1
zm(w,iw2 — w3 wk) V.
Using relation (30) for B, = Epn2 and Eqq = Eq ,—1, we find that

Evna(02), Enawn)] = 5 3 wr(wn), w2)Ens (v )Era(),

yel’



QUANTUM ALGEBRAS AND SYMPLECTIC REFLECTION ALGEBRAS 165

S0
A - j k
[Evn1(w2), Ena(wn))(m @ v) = =5 > w(y(wn), woymy "9y @ B, B3 (v)
yel
A 1 ~
=73 ZW(’Y(wz%wﬁm’Yﬂk Ojk @ V.
yel
Therefore, m (w,iwjz - wfw,i +3 Zyepw(fy(wl),wz)ajk%»yj—l) ® v = 0. From

Lemma and our assumption that A = x, we deduce that m (wiw? — wiw+

5 Y er (@) y)omm; ) = 0.
We use equation (B3]) in the case (a,b) = (n,1),(¢,d) = (n —1,1). It implies
that the difference [Ep1(v), E1n—1(u)] — [En1(u), E1 n—1(v)] is equal to

Enn 1b+ﬁ ZZS nj jn 1(771))

’YEF] 1
+% > (S(Hnl(v), Ennc1(v1) + S(Enn_1(7), anl’l(,y_l)»
yel
= 5 2 e().8) = D(En (Bt () + BBy ).
yel

Now fix k and let v be determined by i, = n —1, 4; = j+ 1if j # k. Set

= ET(”)Z 1(v). Applying both sides of the previous equality to m ® v, we deduce
that

~ _ |l R
M(TpYr — YrTr) @V =m 5+>\+wa ! ®V+T|‘m®V
THid

+ % Z Z mcrjkfykfyj_l ®V.

~yel' J],/;ézkl
Lemma [6.1] and our assumption that A = x,8 =1t — %IFI
[ryk]l =t 4 5 2 er E?’-fkl TRy Z’yviird it
J
That the functor SW is bijective on sets of morphisms follows from the classical
Schur-Weyl duality and Lemma O

— K, by = cy—1 imply that

7. SPECIALIZATION AT A =0

In [Gu2], we proved that, when the parameters A = 0 and § # 0, the deformed
double current algebra is isomorphic to the enveloping algebra of the Lie algebra
gl,, over the first Weyl algebra, which is a symplectic reflection algebra of rank one
for the trivial group I' = {1}. Therefore, it is natural to conjecture that, for an
arbitrary finite subgroup I of SLy(C), a similar result is true, the first Weyl algebra
being replaced by a symplectic reflection algebra of rank one for I'. Theorem [Tl
confirms this.
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Definition 7.1 ([CBHo|). Set € = }__ cp 14y ¢v7- Let A¢g be the algebra gen-
erated by the elements z,y,v € T’ and satisfying the relations v -z - vy~ = ~(x),
vy -yt =5(y) and 2y — yx = t + €. (Here, spanc{z,y} = C? and I" thus acts on
span(c{x, y})

We recall that the Lie algebra sl,(A;z) is defined as the Lie subalgebra of
gln(A¢c) of matrices with trace in [A;z,Arg]. As a vector space, sl,(Arg) =
sl, ®c Ars @ D([At’g,At’ED, where D([At’g,At’gD is the space of scalar matrices
in gl,(A; ) with entries in [A; g, A; gl

Lemma 7.1. For all ¢ and all t € C* except a countable set, the Lie algebra
sl, (A ) is universally closed; that is, it is its own universal central extension.

Proof. Theorem 1.7 in [KaLo| states that the center of the universal central exten-
sion of sl,(A), where A is an arbitrary associative algebra, is isomorphic to the
first cyclic homology group HC;(.A). It is shown in [EtGil] that the first Hochschild
homology group HH;(A;¢) vanishes for all ¢ and all ¢ € C* outside a countable
set. The group HC; (A, z) is a quotient of HH; (A, ), so it vanishes also. O

Theorem 7.1. Suppose that § =t and by = c,—1 for v #id. Then the algebra BZ 5

is isomorphic to the enveloping algebra of the Lie algebra gln(At,g), the universal
central extension of s, (A.z).

Proof. Tt follows from the definition of f)g ¢ and Theorem [L1] that Ll;[n(Atg) is a

quotient of [N)g,b. To prove that the quotient map is an isomorphism, we construct
elements E,;(p) € ng for 1 < a # b < nand any p € A;z and show that
they satisfy the relations in Theorem Al We will give a proof when n > 5; it
illustrates how the calculations are sometimes simpler when n > 5. Let g be the
Lie algebra defined by the relations in Definition B Ilwith A = 0. Lemmal3 4l gives us
homomorphisms sl,[v] — g,sl,[u] — g. Define E.p(v77) = [Eqe(v?), Ecp(7)] for
v #id, a,b,c all distinct, and set inductively Eqp(u‘v7y) = [Eqe(u), Ecp(ut~tvy)]
for some ¢ # a,b and for i, > 1. We define E,;(p) by linearity when p is a sum of
monomials. We have to show that [E.,(p1), Ebe(p2)] = Eac(pip2) if a b # c# a
and [Eqp(p1), Eca(p2)] = 0if a # b # ¢ # d # a for any p; = utv/iyy, pe = u'2v72,.

The first step, however, is to show that the definition of E,;(u‘v?7) does not
depend on the choice of ¢. Since we are assuming that n > 5, choose d, e such that
a,b,c,d, e are all distinct and assume that ¢ > 2. (The case i = 1,5 > 1 is similar.)
Then

[Eac(w) Eep(' ™ 0/9)] = |Eae(w), [Eeas [Eae(w), Eep(u'207)]]|
[[Eac(u)a Ecd]a [Ede (u)a Eeb(ui_gvj'y)]]
[Eaa(w), Eap(u'"*077)].

The arguments used are similar to those in the proofs of Lemmas [3.4], and
L1l We proceed again by induction on deg(p;) +deg(p2) to prove the two equalities
above, which hold when deg(p;) + deg(p2) < 1.

If a # b # ¢ # d # a, choose e # a, b, ¢,d. Without loss of generality, we can sup-

pose that p; = upy and deg(p1) > 2. Then [Eqp(p1), Eca(p2)] = [[Eac(u), Ect(P1)],
Ecd(pz)] = 0 by induction.
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If p; = upy with deg(p1) > 1, choose a, b, ¢, d all distinct, so that, by induction,
[Eas(p1), Ene(p2)] = [[Eaa(u), Eap(P1)]; Eve(p2)] = [Eaa(w), [Ean(p1)], Eve(p2)]]
= [Ead(u)7 Edc(ﬁlPQ” = Eac(u§1p2) = Eac(p1p2)~
If p1 =" with r > 1 and ps = ups, then choose a, b, ¢, d, e all distinct, so that
[Eab(p ) Ebc(p2)]
= [[Eqa(v),Eap(v" '], Eve(p2)] = [Eaa(v), [Eas(v" ), Eve(p2)]]

= [Eaa(v ) Bac(v"™ 1p2)] = [Eqa(v), Edc(uvr 'P2) 4 Eac([v" ™, ulp2)]

= [Eaa(v), [Ede(u), Ece(v"'P2)]] + Edc([ )

= [l Ead ); Ede(w)], Ece (0" Pa)] + Eac s ulp2)

= [[Eqa(u), Ege(v)], ec('UT 'Pa)] — ec(UT '92)] + Eac(vv" ™", ulp2)
= Eac(uv P2) — Eac(Cv"'p2) + Eac( [ ,ulp2)

= Eac(pip2)-

If p; = p1y with p; a monomial in u,v, po = ups and a, b, ¢, d, e are all distinct,
then

[Eav(p1), Ese(p2)] = [[Eae(P1); Eco (7)), [Eva(u), Eac(P2)]]
= |:Eae ’Y) Ebd U Edc D2 ]i|
= { ae(P1), [[Eeo(¥(w)), Esa(7)], Edc(ﬁQ)]]

[Eae (pl)v Eec(y(uﬁé)'y)]
= [Eae(ﬁl)a Eec(’\/(pQ)P)/)] = Eac(p1p2)'

The last line follows from the previous cases since p; is assumed to be a monomial
in u,v. O

Corollary 7.1. For allb(A = 0) and all 8 € C* outside a countable set, the algebra
D;b()\:o) is isomorphic to the enveloping algebra of the Lie algebra gl, (A, ) with
t = B,¢y =by-1 for v #id. This is true, in particular, when A = 0 = by for v # id
and 8 # 0.

Proof. Lemma [I] and Theorem [T imply that D” -~ is isomorphic to sl,(Asz)

with t = 8, ¢, = by for v # id. The 1s0morph1sm glven in Theorem [T.1] can be
extended to Dy b(A=0) and gl,,(A; ) by sending Eqq () to Euq ® 7y for v # id. Note

that ﬁ"éﬁ: Cg [AtAf}i 7= HCy(A;z), and it is proved in [EtGi|] that dimc(A;s) =
cl(T") — 1 for generic values of the parameters (in the same sense as above). O

8. PBW BASES

We follow the same approach as in [Gu2|] to prove that a I'-deformed double
current algebra admits a vector space basis of PBW type. This can be formulated by
saying that the map Dj_q,,_qo — ng(ng) is an isomorphism. We will construct
inductively a vector space basis of Dj ,, which yields the natural PBW basis on
grp(Dfy) = Usl, (Clu,v] x T). We make the same assumption on u,v,z,y as in
section [fl We need to assume that 5+ A — MTIF\ # 0 in this section.
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We need to choose in C[u, v] a T-invariant space E complementary to C[u, v]', so
that Clu,v] 2 Clu,v]" @ E as I'-modules. We can suppose that E = @, -, E[m] is
graded by the degree of the monomials and F(1) = U. Let us assume that we have
constructed elements Fup(p) € Djjy, for all p € E @ span{py[p € Clu,v],y # id}
of degree < N V 1 < a,b < n and also V p € C[u,v]" + C[['] of degree < N — 2
V1 < a,b < n, such that Fup(p)(h @ v) = 22:1 hp(zk, Yk, YE) @ E((IIZ)(V) if h €
H:.(Ty),v € (C*)®L. This is already known to hold for N = 1. We use the notation
Fap(p) instead of E,p(p) because we must set Fup(7) = Eap(771), Fap(tiu + tov) =
Eup(t1u + tav),t1,t2 € C and Fup(wy) = [Eae(7™1), Ecp(w)] for some ¢ # a,b. We
want to construct by induction such elements Fo;(p) for any p € Clu,v] x I', 1 <
a,b < n. Set Hup(p) = [Fap(p), Fa) for 1 < a # b < n if Fup(p) has already been
defined.

Let p(u,v) € Clu,v]", p(u,v) # 0 be a polynomial of degree N —1 (we can assume
that p(u,v) is homogeneous). In the computations below for ]3(h ®v), we will not
need to use that p(u,v) is I'-invariant. However, we have to start with this case in
the induction step.

Suppose that p(u,v) = 3 ~o(ck rusv™™ — & su*~'o"), where f e € C
and ¢ . =0=c(p,r,s)ifr+s # f. The proof of Proposwion 2] suggests that we
consider the following elements:

r—1

ﬁz‘ = Z (C]rj,s[ﬁi(usvr)aﬁi(u)] + E;’?,S[ i(usvr)’ﬁi(v)]) and I:\) - %Zﬁl

l
Phev)= 5 Z (Cp hlze, 23yp] — & h[fkykayk])
® (B + Ei+1,i+1)(k)v

1 & : s, T ~ s, T j k
+3 Z (& hlzr, z5yf] — e hlziys, yk]) @ HZ-(J)HZ-( )y
Sk=1

i=117,5>0j,k=

<
B

l r—1
= Z(Cf’s hafyitler, yely - thk T, yrlzg ! >®v

cgﬁs d s—d—1,r szs s—d—1,r
Th%‘[ﬂfk,%‘]%‘ Y; — ha{ [xjayk] Y;

@ HVHDy

7

n I r—1
cP
DI IDINE T AT

5 d[yjayk]y§ - 1)

@ H® gLy
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r—1
+ Z Cf,sz Z thkyk%k%% 1y£ -

r,s>0 d=0 ik=1~y€l
J#k

+ Y haiying T @v
VeI {id}

s—1 l

- KR
_ C'Ir‘),s 5 Z thko']kﬁyk»y] 1 S d— lyk

r,5>0 d=0 ik=1~y€l
J#k

+ Z cyhafypry  lyp | @ v
yer\{id}

n
K ~1ys—d-1,r
-1 S5 S bttty a5
i=1r,s>0 j#k d=0~vel’

x T k
— & vl ey ) © B HP (v)

n
> 5 S el sy

i=1 r,s>0 j#k d=0v€l’

r— k j
_wchsxjyjakj'yj'yk ly] = 1)®Hi( )Hl-(j)(v)

+ Z Z Cv( thkylﬂ [ o7
r,s>0yeT\{id}
rszhxk,y Sdlr) >®V

l n
Y Y (mzhw g

r,sZOJ’j,.f;é:kl”/GFe,i:l
s5— T k j
- th Y )@E&’El‘i)w)

—S > ZZZZ R R e o U 1 L T
7,520

Jk=1d=0~€l i=1
J#k

) k) 1 k 1 k
o (BY 5 - 3B B, - 52, 1E;3+1) )

-5 Z ZZZZ PV =& Wl ohatyiy T T D

rs>01§éld 0~yel i=1
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1,0+1"1+1,¢ 41,072,141

l r—1 l
=13 ol © v - TN Y Ay ev

r,s>0 d=0v€T k=1

B Y YT Y R Pty (e v)

7,520 d=0 €T e,i=1
e#i

+ Z Z_: Z ZC’Y (Cg,sl:ii(usvd’y(vrfdfl),y)

7,5>0 d=0 yeT'\{id} i=1
(38) +& Fu(uly(u ™)) (h@v)

(39) + ZZ > Zc W )Fa(y(0" ), Fi(utoly ™)) (heow)

rs>0d 0~el\{id}i=1

@ LY YT @bty ko v)

7,520 d=0 y€T e,i=1
e#i

E0 DI W IR

r,s>0d=0~€l' k=1

s—1 n
I DI I D B e (L

0d= O'yEF\{ld}l 1

» 1 1
®<E§5)Eff) LB B, - LB, Y >(V)

(42) fg S Sl R Rt e v)

>0 d=0~el'\{id} i=1

42 ZZZ Cp swa—1 —Cfswiy)(Fi+1,z‘(’Y(US_d_lUT)V)FmH(UdV_l)

r,5>0d=0~€el i=1
(43) + Fiira(y (US*d*lUTW)FiHi(ud’yfl))(h®V)

(44) 4+ ZZ S S @ty (e )

rs>0d O’YEF\{Id}Z 1

+ > ZZZ o W = W) (Firri (Y0 ™D y)Fiip (wo?y™h)

r,s>0d=0~y€el i=1
(45) +Fiin (V0T Fii(wtely ) (hov).
Set I(p) = P — @0 — @R) —--- — @H), where (@) is the expression on line
—1.
@7) but without h ® v, and 1(p) = (5 Ny %‘F') [(p). Then I(p)(h ® v) =
22:1 hp(z, yk) @ v.
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Finally, set F11( )

Zk Lho(ze, y) ® E(k)(v). We can then
We let Fop(p) = [Faa(p), Fap) if 1 <a#b <
We must now construct elements F,;(p)

2(p) + XI5 (1 = DHiin(p), so Fu(p)(h @ v)

171

obtain F;;(p) with the same property.
n.
V p € E @ span{py|p € Clu,v],y # id}

of degree N +1 and V: 1 < a,b < n. Suppose first that 1 < a # b < n and put
p=u’v"y with 7+s = N+1 and, without loss of generality, 7 > 1. Choose ¢ # a,b

and set Fab(usv’") = [Fae(v), Fep(usom=1
! !

thkykc@Eﬁﬁ) Z [2Ryr i)

k=1 j.k=1
;ék

= hapy, ® E(k>

1 3 k=1d=0
J#k

MN

k

r—2

Z Z hxk [xkv y]

)]. We compute that Fyp(u®v")(h®v) equals

® EQEY (v)

Sy @ BEQER (v)

1
+ Z hmkyk[yk,yg]yL 2-d QE J)E(k)( )
j,k=1d=0
.;ﬁk
s—1

j,k=1d=0~€l
J#k
l
K h r—2—
D) Wy mkl/k%k%% yk
j,k=1d=0~€l

J#k

1
k=1 ]k 1d=0~el
I#k

Z Z wv’yhxkajkww]

CD 3D 9) pELTTOE

1 _s—1—d r—1

QEZER (v)

Ty Yk
‘@ EXES (v)
s 1—d r—1 —1
YW i

l —
. K o — i
@ BEDER (v) - 5 ) E > " wlhaiyin(y); My @ BRES (v)

j,k=1d=0~y€T
J#k

v)

hzjyh @ EX)

MN

el
Il

1

(46) -

[

(47)
(m)/

Setting Fap(uv") = Fap(utv") —

- @',

D (Zw:’yaa(w1dv<v>”v>Fab<udvl>

Zw an (' vy 1)7Fcc(v(v)“2_dv)>(h®V)‘

!/ . .
where ([46)° is the expression on

line (6) but without (h® v), we have obtained an element with the required prop-

erty. For -y # id, we can set Fq,(uv™y) =

[Eaa(v™Y), Fap(uv™)] and Hyp(u®v"y) =

[Fab(u®v"), Epa]. If p = Dy, v # id, theriﬁ is a sum of monomials u*v" of degree
N + 1, so we can also define F,;(p) and Hgp(p).
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Suppose that v € T'\ {id} and let u(vy),v(y) be a basis of U =2 C? consisting
of eigenvectors of  (necessarily for nontrivial eigenvalues p(7),v(7), respectively).

The Vectors z(7),y(v) are defined similarly. For s > 1, we set D( (7)v(y)"y) =
plemmen H('y)) S H (U(’Y)Sfl (7)), Hi(u(7))], whereas if s = 0 and 7 > 1, we set
D(U(W)T’Y) = 1 ,,(7)) > 1[ s(v(y)" 1Y), Hi(v(7))]. Let us assume that s > 1;
then D(u()*v(7)"7)(h ® v) equals

S

1
(Z hlz(Vk, 2(MEy(Mive] @ v

k=1

(1= ()

n l .
+%Z 3" hle()r 2()3y(N5v] © B HD (v)

=13,

¢ 2O YD heMiyMEz(e yly(Mi @ v

+;Z ha (1) 9le (V) ks 2(1);12(0) ;" Hy(n)jy; @ HE HP (v)

k=1
p(y) = ! .
Y A=) z(Miy (N CiRART
e PIPILLLL Zg T
+ ) Cﬁk) YN ey
Fer\{id}
n I s—1
u LA s—1— r k j
_mz Z wg(ﬂ/)hw(“/)?cfjkvk’yj 1m(7)j 1 dy('y)j'yj ®Hi( )Hz‘(J)(V)
)52 j=1 a=0 7er
Ji#
n I r—1
K = ’ . -
mz > ‘*’am) Y ha(y)3y(n) o ATy ()T Ny
K 1:19,‘1;:1d:07y€r
J

@ HMY Y (v)

1’Yk ®v

:
t
\\M:z

l
= ha(My Ty Nie @ v Sl rere
k=1

)y . ez
+ 2(1 — u(v)) ; dz:o;e;h 'Y)k'y (7)) Vi 'YJ’Yj ik ®
j#k
M('Y) L= c~hz s d=~ r—1—d~ v
+ ) ;;1 dg er%ld} h (V) Ry (N7 (W)} Tk ©
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~— 1— d
ZZ 3 h(Zw‘””) MNIF @) T (D)) ETiTe e

,u('y i=1j#ky€el

3 OO %)
d=0

® 2B B ~ B B~ B ED) ()

1
Z hz(v)}, Wy © v

(48) +(1ti“7(2))l(u(v)sv(w Nhev) - Zer M) (hev)
Jer a=
(49) fl_t(,j(v T Y Y )P )% e )
d 0y€l a,b=1
(0) o+ ) )Z T o5l () o)) ) (e v)
d=075el\{id}
n s—1
(6) ey 2 2 2 5T (2R @) T T o) R ) )
i=1d=07el
(52) fFiH,iﬁ—l(u(w»S 131 (0(4)) 3 ) Fi i1 (w(7) )
(53) = Fuirt(3 () T @) T ) Fira(u()?) ) (h @ v)
n r—1
(64) =y 2 2 2 5 (FaG ) )R (u() o))
w) i3 4= 05er
(55) = Fip1i(F() T Y (u(y) v(v) %)
(56) = Fiit1 G0 =95 )i (w(n)* (1)) ) (h @ V).

Set D(u(7)*v(y)™y) = D(u(y)*v(y)™y) — @R) — --- — (B6)" where @)’ denotes

the expression on line (@8] but without (h ® v). We deﬁne Fii(u(y)*v(y)™y) in the
following way: o, (u(1)°0(1)"y) = & (Du(1)*0(1)"7) = i iHu(u(2)*0()"))

and, recursively, Fi;(u(v)*v(v)"y) = Hi(u(v)*v(7)™y) + Fitri41(u(y)*v(vy)"y) for
1<i<n-—1. If p=py,~ # id, then p is a sum of monomials u®v" of degree
N +1, and u®v" can be expressed uniquely as a sum of monomials in u(y), v(7), so
we can also define F;;(p).

Finally, we should explain how to construct elements F;;(p) when p € E[N + 1].
It is enough to consider the case when p is a monomial u(~)*v(7y)r on which some
element v # id acts by the nonzero eigenvalue p(y)*~". We have just seen how to de-
ﬁnfz Fn-l()lf(v)sv(v)rv)» and we set Fi;(u(v)*v(y)") = (1 — ") 7! [Fii(u(v)*v(7)"™),
Fa(y™)]-

We have thus constructed elements F,,(p) Vp € Clu,v] x T, 1 < a,b < n. Let

B={Fu@ v y)1<ab<n,r,s>0vel}.

Let us fix an < order on B. We can assume that Fg, p, (4" 0™ 91) < Faup, (u®207272)
if a1 # ag and ag = bs.

Theorem 8.1. The canonical map Dj_q_o — ng(Dg’b) s an isomorphism.

Proof. We follow the same ideas as in [Gu2]. We will prove that, when S+A— %IF\ #*
0, the set of ordered monomials in the elements of B is a vector space basis of Dj ;.
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Suppose that we have a nontrivial relation of the type

CHRDY > c(d, A, B, R, S,y, EY)M(d, A, B, R, S,7, E) = 0,
deS:1 (A,B,R,S,v,E)€S2(d)

(ZZ())XdXFXdX (Z>0)Xd,A:(a1,...,CLd),B:(b ,...,bd), R:(’Fl,...,T‘d),S:
(51,...,8(1),1:(71,...,'7d), E=(ey,...,eq), [1,n] ={1,...,n} and

where Sy, S2(d) are finite sets, S1 C Zsq, So(d) C [1,n]*?% x [1,n]*¢ x (Z>()*? x
1

M(d, A, B,R,S,v,E) = Fa, (utoytyer ... Fauby (usdv7'd'yd)ed

is an ordered monomial in the elements of B. (In particular, Fap, (u*v"y") #
Fajbj (usjvrj’yj> if i 7é .])
Let us choose a specific (d, 4, B, R, S, ¥ F) such that
(1) Zgzl(rg + 54)ey has maximum value for which ¢(d, A, B, R, S,v, E) # 0;
(2) among these, it has maximum value for Zgzl(l — Bagb,)eq ;

(3) among these, it has maximum value for 23:1 Oayb,Cq-

This choice may not be unique. Set M = M(d,A,B,R,S,j, E). Set § =
ZZ=1 eg. Now suppose that [,11,...,l, € Z>¢ are such that iy +---+1, =1 — 0.
Welet v=2v'® - -@0v,v =0 ®- - @7 be the following elements of (C*)®' for
[>6:foreg+---+e_1+1<g<e+---+ejsetvd = Ubj,ﬁg = Va;, Mg = Ty,
g :’y; el andset v =09 =v; if 6+ 11+ + L1 +1<g<d+1L+--+1,.

Because of our assumption that equality (57) holds,

(58) ) > c(d, A, B, R, S,v, EYM(d, A, B, R, 8,7, E)(1@V) = 0.
des; (A,B,R,S,v,E)€S2(d)

Consider the vector space basis of Hy ¢(I'1) ®¢(s, (C™)®' (with ¢, ¢, 8, b as in section

T Y T Y
[6] so that this space is a module for Dg’b) given by the monomials x?’ y;zl e x[fl Yty

®V, where ¢¥, ¢! € Zs0,y €T, v=7'®@--- @7 with 77 € {vy,...,v,}. We can
decompose the left-hand side of (B8] as a sum of vectors in that basis and do the
same for M(l ® V). The coefficient of mgms_1---miys---71 @V in M(1 ® v) is
equal to éc(d, A, B, R, S’,j, E) for some & # 0 which depends on the multiplicities
e;,l;. Furthermore, the only other monomials in the left-hand side of (57)) which can
produce a nonzero multiple of mgmg_1 - - - m17s - - - 1 @V when applied to 1®v differ
from M only by the value of e, for g such that a, = by, m, = 1,7, = id. Because
of our assumption on the order on B, these elements always appear at the end of
each monomial in (57). Therefore, the coefficient of msmgs_1 - - - MmiYy - -1 @V in
the left-hand side of (B8]) can be viewed as a polynomial in [y,...,l,. Since this
polynomial vanishes for infinitely many values of these variables, which can be given
arbitrarily large independent values, it must vanish identically, so its coeflicients
are zero and c(d,/l,B,R,S’,j, FE) = 0. Repeating this argument, we conclude
that all the coefficients ¢(d, A, B, R, S,v, E) in (57)) equal zero. This completes the
proof of the linear independance when 8 + A — /\nTIFI # 0. This means that the
map Dj_,_o — grp(Djy,) is an isomorphism if 8 + A — A”Tlf\ # 0. By upper-
semicontinuity, it must be an isomorphism for any S, b. ([
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Let ®; be the algebra homomorphism Dj ,, — Endc (V') coming from the D ,-
module structure on He o(I'y) ®cs,) (C™)®.

Corollary 8.1 (of the proof of Theorem BII). Suppose that 8 + X\ — MTIF\ # 0.
Given M € Dy, there exists an 1 > 0 such that ®;(M) is not identically zero.

9. CYCLOTOMIC CASE

It is possible to generalize most of the results of [Gul] and [Gu2] to the case
when T is a cyclic group of order d. In order to do this, we first have to consider a
family of graded Hecke algebras for the complex reflection groups S; 1 Z/dZ which
were first introduced in [RaSh| and studied when d = 2 in [Del|] and, in general, in
[De2]. We will then prove an equivalence of Schur-Weyl type between a localization
of a rational Cherednik algebra and an affine Yangian, generalizing the work in
[Gull]. Afterwards, we will explain how to realize the Z/dZ-deformed double current
algebra D ;, as a subalgebra of this affine Yangian.

9.1. Graded Hecke algebras for S;!7Z/dZ. Fix l,d > 1. Set I' = Z/dZ and
let T'; be the complex reflection group G(I, 1, d), which is the wreath product I'; =
SV 7)d7 = 7.]dZ*! x S;. Tt is generated by reflections Oiiy1 € 5,1 <i <1 -1,
and by pseudo-reflections &; of order d, so <fg>?;3 ~7/d7,1 <i<Il. Let h = C
be its reflection representation and choose dual bases {y1,...,u},{x1,...,2:} of b
and h*. Fix a primitive d*®-root of unity ¢ so that & (x;) = Cxi, & (y:) = ¢ Lys. Let
e;,i =0,...,d — 1, be the primitive idempotents of Z/dZ, so e; = %Z?;& =
and let e; ;, be the idempotent of I'; corresponding to e; in the Eth copy of I in I,
s0 e p = 132070 (el

Definition 9.1 ([RaSh]). Let x € C. We define the degenerate affine Hecke algebra
of T'; to be the algebra H,(I';) generated by I'; and by the pairwise commuting
elements {u;}!_, which obey the following relations:

§juig =wi& forany 1 <4,5 <1,  oyu; =ujo;if j #4941,
d—1
Oilli41 = Ui0; + HZfi_kng for1 <i<l-—1.
k=0

Remark 9.1. Note that, when r = 2, I'; is the Weyl group of type B (or C), but
the algebra H,(T';) is not isomorphic to the degenerate Hecke algebra of this type
as defined originally in [Drl], [Lu]. If x # 0, then H,(T;) = H,—1(T).

Proposition 9.1. The elements of the form p(uy,...,u;)w constitute a basis of
H.(Ty), where w € Ty and p(uy,...,u;) is a monomial in the variables uq, ..., u;.

The proof of Proposition given below uses the PBW property of a subalgebra
of Hy ¢(T';); see Proposition It will be convenient to rewrite Definition 2.1]in a
slightly different form.
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Definition 9.2 ([DuOp| [EtGi]). The rational Cherednik algebra H.(I';) of T
with (multi-)parameters ¢t € C,c = (k,cy,...,cq—1) € C? is the algebra generated
by C[p], C[h*] and T'; subject to the following relations:

o-x-0cl=0(x), o-y-ol=0(y) forzebh*, yeh ocTy,
a1
s, @] = yjoi — wayy; = —k Y (&P oyl i #
k=0
1 d-1 a1
[yi, xi] = yizi — wiy; =t + I‘GZ Zfi_kgijﬁf + Z dek(ek,i — ex—1,i).
i k=0 k=1
YE)

We denote by Y;,U; the following elements of H; o(I';) (see [DuOp]):

I d-1
1 t K -
Vi = s(xiyi +yizi) = B} + @iy + 9 Z Zgi kaijgf

2( :
i=1 k=0
J#i
1=t

+5 chk ki — €r—1,),

ui:*‘i’xzyz‘FH Z Zg Uzj£k+zdckekz

1<j<i k=0
o d-1 =
(59) =JVi— 5 ZSign(j — i) kzof;kaijgf kZlde ek +er_1)-
JI= =

J#i

In the computations below, the following formulas will be useful:

d—1
. . R _ X
(60) For i # j, [Vj,z:] = —5 > (Fay 4 2:)8; Faiek,
k=0
d—1 d 1
(61) D}iaxz} te; + = ZZ T; + C xj)f O-ljg + = chk €L+1,i — €k—1 z) Ty
i=1 k=0
J#i

We need to obtain an expression for [V;, )] for ¢ # j which will be useful later,
so we compute: [1]

l d-1
(62) Vi, Vil = wilyi, xilyy + 25w, y5lyi + - |2y, Z Z ‘5 Ub]fg
bz "
I s K2 | 4t I d—1
(63) 45 DD & owitl gy |+ (DD & o Y & ety
b=1 k=0 b=1 m=0 e=1 k=0
Lb#i b#i e#j
dre 4 1 1
(64) +— Cal€ai —€a—1,), Y &5 00&5 | + | D& 00kl cal@a; — €a1,5)
b=1

a=1 b=1
k=0 b#j b#i
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We compute each of the sums in ([62]),([63]) and (G4]) separately.

d—1 d—1
k¢e—k k ke—k k
6 = —ra; Yy P& oy +may Y KT gy
k=0 k=0
d—1 d—1

K _
M+ 3 Z[fi ol ay;) =0

k=0 k=0
2

l
@=""3 3 [ ot & o] %Z S 6 6 ol

b=1 k,m=0 b:_l k,m=0
%,

+ % > (6" oigEl €5 Fo]

K —m+k —k k
YN (e ooy — g 0

ke—k —k—
+ &G ooy — T 0vion;

—m—k pm gk kek
+ &R oo — £ e TTTES Ubﬂm)
2 l d—1

=3 X G el 0w

b=1 k,m=0

d—1 d—1

@D = 7> dea Y ([(eai = eam1): & Foisf] + 675 0156F (eas — €am1,)]) = 0.

a=1 k=0

Therefore,

(65) Vi, V5] = Z Z &R [ovs, v

Let ﬁt,C(I‘l) be the subalgebra of H; o(I';) generated by I'; and U;,1 <14 <.

Proposition 9.2 ([DuOp|). The elements Uy, ... ,U; commute pairwise. Moreover,
the elements of the form p(Uy,...,U)w, where p(Uy,...,U;) is a monomial and
w € Iy, form a vector space basis of the algebra Hy o(IT';).
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Proof. In view of equality (B9) above, it is enough to show that

d—1
D}uy] - — ZSlgH - 7’ Zg sz€z7ZSIgn 6 - ) Z gjmaejgr
m=0

b;éz e;éj

Let us assume that ¢ < j. The right-hand side is equal to

9 d—1 1
[ . — —m m
— Z&gn(bfj g E & kUjiff,fj ob;&; ]
k,m=0 b=1

#w

) _

K . , — —m m

+ ngn(b —1) E E &, kdbiﬁf,fj 756"
k,m=0 b=1

75%]
2

—%sign((b—z )(b—13)) Z ZE szfl,f "ol
k,m=0 b=1
i,

2 d—1
K —k—m ¢k - ke—k —k ke—
T Z Z (fi M oo — & T P onoiy — E TR Moo

k,m=0 b<i

—m— —k —mek —m+k —k
R e gy — €7 e i + €T 000 )

=

d—1
+- > Z( gk e ajion + e TR ooy + &R M oyi04;

k,m=00b>j

—m—k —k — — k —k
— &R oo — &7 e M aviony + &R, Ubj‘””')

=

+Z Z Z (f_k mg &' 0ji0bj — E £m+k§z‘ opjoij + & §m+k€ Obi0ij

k,m=01i<b<j

— &R oo + & M oy — €T i”&[kabﬂm)
-7 Z Z &R R lovs, o) = [V, Vi),
where the last equality is (@3] below.

The second part of the proposition follows immediately from the PBW theorem
for Hy o(I'7); see, e.g., [ELGil. O
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Proof of Proposition [0.1l Tt follows from the definition of H,(T';) that the elements
p(u1,...,u,)w span He(I')) as a vector space. We have to show that they are
linearly independent. The operators U; satisfy the same relations as the elements
u; in He(T';) (see [DuOp]). For instance,

; d—1 d—1
—k k
oy = 5 + 0iTit1Yir1 + K E g 0 10i+1,3841 T 06 E degeg, it
1<j<i+1 k=0 k=1
d-1

t
§Uz+$zyzaz+ﬁzzg O.Z]fz Uz"'Kfo k£z+1+zdckea i0i

<t k=0

*Z/lJHrHZﬁ fEr

k=0

This shows that we have an algebra epimorphism H,(I;) — ﬁt,c(Fl), which
must also be injective because of the PBW property of H ¢(I';). ]

Corollary 9.1 (Corollary of the proof of Proposition[@.1l). The algebras Hi(T';) and
H; (') are isomorphic.

From Corollary and the computations before Proposition [0.2] we deduce the
following proposition.

Proposition 9.3. The algebra Hi(T';) can also be defined as the algebra generated
by elements y;, 1 < i <1, and v € I'; satisfying the following relations:

Ifi # 3, y“y] Z Z gim ké-mgb [Ubj7ab2] 0yi0 — = Vo(i)s

gayi :Yz'fa; O'GSI,]. Sagl

Setting y; r = yi€k,, 1 <4 < 1,0 <k < d—1, we see that H,(I';) can also be
defined in the following way, which will be useful later.

Proposition 9.4. The algebra He(T';) is isomorphic to the algebra generated by the
elements y; 1,1 < i < 1,0 < k < d—1, the idempotents e;,; € C[I'|] and o € S|
which satisfy the following relations:

[yi7k1,Yj7k2] =0 Zf kl # k27 €k ,iYi ko — 6k1k2yi,k¢2 = Yi,k2€ky,i»
k1, Yisks = Viko€hi,j U © # J

d?K? .
(66)  oYik =Yo(i) k0 [yik Vikl = —5— > enier jenplovi, 0v) if i # .

b=1
bi,j
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For each Weyl group, I. Cherednik has introduced the notion of double affine
Hecke algebras (DAHA) |Chl]. These algebras afford two types of limit versions
called degenerate (trigonometric) DAHA’s and rational DAHA’s. These rational
Cherednik algebras can be defined for any finite complex reflection group, but
no such definition exists for affine or double affine Hecke algebras. We propose
to introduce the following algebra, which extends the definition of the degenerate
DAHA of type gl; when d = 1.

Definition 9.3. We denote by H; . (T';) the algebra (C[mf, ... ,xf]@c[zl’”m] Hec(Ty).
(We can localize H, .(T';) at Uézl{l, x;,22,...} since this is an Ore set.)

We can obtain a presentation for H; o(I';) which is an affine version of Definition
9. 1]

Proposition 9.5. The algebra Hy (I';) can also be defined as the algebra generated
by xli, e ,xli, v € I't and the pairwise commuting elements uy, . ..,u; subject to the
following relations:

1) The subalgebra generated by xi,..., x5,y € Ty is an epimorphic image o
1 157

C[l‘it, . ,l‘l:t] X Fl.

2) The subalgebra generated by uy,...,u; and v € I'; is an epimorphic image

( gebra g y gl g
Of HK(Fl).

(3) oouj — oo(uy)o0 = —k{ap, u;) ZZ;(l) C‘kﬂfff’“, where og = xlelalg,u €
spanc{u1,...,w} and ag = uf —uj, {uf,...,u’} being the basis dual to

{u1,...,w}. (00(u;) is defined in analogy with the action of the affine Weyl

group on i)\*)
(4) mu; = wipim if i £ 1, muy = (ug — t)w, where 1 = 217 and T = T12093 - -
O1-1,1-

Corollary 9.2. For any ¢ = (k,c1,...,ca-1), Hye(I') = Hy c—(s,c,=0)(I'1)-

An isomorphism Hy o(I'y) — Hy c— (s ¢, —0) () is given by
d—1
Yi = Yi — (Z dckek—l,i> x;t
k=1

Proof. The second set of relations was already obtained in the proof of Proposition
We have to establish the third and fourth relations for ;. The conclusion will
then follow from the PBW property of H; (I';). Suppose first that ¢ # 1,1.
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; d—1 d—1
—1 —k ok “k_ ¢k
ool = 300 +Tirx; Yo + K E E § o600+ kK E o0&; "o1:;
2<j<i k=0 k=0
d—1

+ E dckek,ioo
k=1

d—
t _ _ _
= 500+ ziz[z; Luilou + iy o+ kY Y & ok

2<j<i k=0
d—1
Lk _ ¢k
+I€E Ty & Topélou + E degeyg ;o0
- k=1

t —1 ke—k _ ok —1 —1
= -00+KT;T1| —T, E " Fouly oty yilry outaiyivix, Loy

2
k=0
+ry Zf Foii¢) Uo+/€ZC & oalf oy 011+Zd0kek200
2<j<i k=0
d—1 d—1
—k_—1 k —1 ke—k k —1
:—anigl x; ou&lrix] oy + KX ZC & "oy | T ou +Uiog
k=0 k=0
d—1 d—1
—k —k —1
*HZEZ' UlifoOJr"&ZCkfi oulfa; oy
k=0 k=0
::LQGQ.

The other case left to check is i = 1. (The case ¢ = [ follows from this one.)

d—1 d—1

t 1 ~1 —kagk
ooty = 500+ T TYon + T E Ca E MG oy
a=1 k=0

-1  d—
1) ¢k, ~1
1500+$1y1011+;CaZC @ Veta wio

d-1
t
= 500 + [z, yilou + yizioy + ];dckekq,zao
; d-1 d-1
=300+ ﬁzckffkffuffau + [y, m]oo + ziyio0 + chkekq,lao
k=0 k=1
d-1
=—Uo+HZC & +(t+r Y Zfz o€+ der(ens — ex—1.)|o
1<j <l k=0 k=1
d-1
+ oo+ Y dexer 1,100
k=1

d—1
= mZd“g;’“g{“ + (U +t)ao
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We now have to check the third relation involving 7. First, let us assume that
1 # 1. Then

; d—1 d—1
—k k
U = 37 + 21 | Tip1Yir1 K E E §ir10i+1,58i01 + E deperirr | T
2<j<it+1 k=0 k=1

t
57 + <$¢+1[9C17yz’+1] + Ti11Yi+121

E E §z+101+1,j§z+1x1+§ degepivizy | T

2<j<i+1 k=0

d—1
t o )
=57 + (xiﬂ <f€zgk51 kUl,iHEf) + Ti 1 Yir1 71

k=0

d—1 d—1 d—1
-k _ ¢k —k . k d )
€i+102+17j§i+1x1 -k €¢+101,z+1€i+1$1 T+ CkeL i41T
1<j<it+1 k=0 k=0 k=1

i+17-

Finally, we check the relation for ¢ =[. Then

d-1  d—
T = 571'—!— xlyl—i—/@xl Z Zgl aljfl +an2g—’m k7
a=1

2 <1 k=0
; d—1
= o+ | Tz + @iz, p] + ko > Zfl o8+ derer iz | 7T
2<; <l k=0 k=1

d-1 d-1
t _ )
=57 +oyim+ |z | —t—k E § &b ayEf — E dei(er,1 — ex—1,1)
k=1

1<j<l k=0

+ ka1 Z Zfl 01]§1>T+Zd0kek+1 17

2<j<l k=0
— U — ).
(I

9.2. Schur-Weyl duality in the trigonometric setting. In this section, we
establish Schur-Weyl type equivalences for H, (I';) and for H; o(I';). This will have
applications for H; ¢(I';) in the next subsection. Recall that C'\n,l = (Cij)o<i,j<n—1
is the n x n Cartan matrix of affine type A,

Definition 9.4. Let A € C. We denote by Y)" 4 the algebra generated by the
elements Xf”,HZi”, 1<i<n—-1,0<j<d-—1,r > 0 which satisfy the following
relations: for any 1 <iy,io <n—1, 71,7r2,5 € Z>0:

If j1 # ja, then

Xt XE ]=[XE O XF . ]=0,
11,71,J17 7 T 12,72,)2 11,71,J17 7 T 12,72,)2
+ _
[Hil,ﬁijXz’ ro.j ]_ [Hi1,7"1,j17Hi2,7"27j2] 0,
2,72,J2
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(67) [Hih?“l,j’ Hi2,7“2>j] = 0’ [Hilv())j’ Xijg:,s,j]
[Xa >

91,71, Xiz,rg,j] - 611712HZ1,T1+T27J7

= :l:Cil,iQXi

12,8,))

A
+ + +
(68) [Hi17r1+1,jaXi2,r2,j] - [Hilﬂ"laj’XiZ,errl,j] = i§Ci17iQS(Hilarlv.j7Xiz,TQ,j)’
A

+ + + + + +
(69) [Xi177‘1+1,j’ Xisz;.i} - [Xih"'l;j’ Xiz’errl;j} = igcilviQS(XihTh.i’ Xizﬂ‘z;j)'
For any 0 < j1,j2 <d—1,

+ + + + _
(70) Z |:Xi177'7r(1)7j17 [Xil,rwm),h’ T [Xilvrﬂ(m,)aj17Xi2a57j2] e ]] =0,
TESm

where m =1 — CijyT1s++-yTm,S € ZZO'
Remark 9.2. The algebra ;"% is isomorphic to (Y{")®% where Y* = v;"=! is

the Yangian (of finite type) for sl,,. The reason for using the notation above will

become clear in the next definition. We will write Xii)j, H, j instead of Xii)oyj, H;oj;.

Definition 9.5. We denote by SA(;LZ, B = (Bo.B1,---,Ba-1) € C% the algebra
generated by the elements XiiTj,Hl-ym-,O <1<n—-1,0<j5<d-1,r >0 which
satisfy the relations in Definition (extended to i; = 0 or i3 = 0) except that
certain relations for i; = 0 or 75 = 0 must be modified:

(71) [HO,T1+1,i7X(;r,7-2,j] - [HO,m,ivXar,mH,j] = 51'7]'—1/\5(}[0’”’“X0+v7'2vj)’
(72) [Hoo.0, X1, 3] = F0i5-1X 1,5, [Hoo Xorg) = 200,-1X4 5,
(73) [XS:M, Xo.s3] = 0i—1,jHo,r+5,j5
(74) [Hi0 Xorg) = 01 Xo g [Ha1,05 Xor ] = =6i1,5X0 05,
(75) [X0 415 X o g] = Xy 5 X rai1g] = (B = XL, 5 X0, 5 = Bi X0 5 X s 5
(76) (X041 Xirogr1] = [Xor g Xtrot1j41) = Bit1 X1 g 541 X0,r
—(Bj+1 = N Xory X1 et
(77) [X(;r,r1+1,j+1vXZ—1,r2,j] - [X(;r,rl,j+1erer—1,r2+1,j] = (8 - )‘)XJNJHX:—LTZJ

+ +
—BiXn—1,r5,3 %01 j+15

(78) [X(;r1+1,j7X;—1,r2,j] - [X(;rl,j7X;—1,r2+l,j] = ﬁjX(;rl,jX;—l,rg,j
7(5] - A))(;71,7"2,j‘)(07,r1,j’
(79) [X;:*l,rl,jl ) Xajwv.iz} =0= [XO_,Tlvjl ) Xl—yrzv.iz] if j2 # j1+ 1.

From relations (3)) and (78)-(T8), we can obtain relations similar to (G3)).

Remark 9.3. Proposition [43] states that ?Zfo,ﬁzo is isomorphic to sk, (Clu®!, w]
xI) with T' acting on u by &(u) = Cu and trivially on w. The subalgebra of

Y;’g generated by the elements X;Ej = Xii()j and H;; = H;p; is isomorphic to

ilf?[n((C[uil] x I'). Tt is explained in [GHI] that sl, (C[u™] xI") = sl,,4(C[t*!]) with
t = u? and thus sl,, (Clu™, w] x I') & sl,,4(C[tT*, w]).

Definition 9.6. A module M over ?;Lg is said to have trivial central charge if the

action of the element Z?;é Z;:Ol H, o is trivial.
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Definition 9.7. The quotient of SA(;LZ by the ideal generated by the central element
Z oS Hi o will be denoted LYﬁl\’é.

The main results of this section are the next two propositions, which extend the
results in [Gul].

Proposition 9.6. If A\ = kd, there exists a functor SW : Hy(I'}) — modp —
Y)\”’dfmodlL’mt given by M — M ®cs,) (C™)®" which is an equivalence of categories
ifl+1<n.

Theorem 9.1. If A\ = kd and B; = § — ’\("_2) + (Cj_éj“)d (where co = 0 = ¢q),
there exists a functor SW : Hy o(I';) — modR — Y”d modlL’f?Ttiv given by M —
M ®c(sy (C™)®! which is an equivalence of categories zfl +2<n.

Proof of Proposition [0.G. We use the presentation of H, (') given in Proposition
04 Set wi = 52 ear SIX5 X5 XT,) — 1S(X5, Hiy), where XZ

A 2,7 1_]a
is the matrix E;; € sl, if o = ¢ — ¢;, and J(Ei)J = XZlJ + )\w;:j. Setting

JED(m @ v) = Shoymye; @ B (v) and Xjm @ v) = Sy mej, ©
EFM(v) for m € M,v € (C")®! gives M ®¢(s, (C™)®" a structure of a left module
over Yy*. This follows from [Drl] and equality (68)). Since yi, j,Vks,jo = Tka,jo Vk1
and ej, p, €5,k = 0 if ji # jo, we can conclude that these module structures
commute, so we get a functor SW: H,([';) — modg — Y;L’d — modlL’mt.

Assume now that [ + 1 < n and let N be an integrable Y/\"’d—module of level .
Since it is a direct sum of finite-dimensional modules over sl,,(C[Z/dZ]), according
to Proposition (see also [ATY]), N = M ®c(s,] (C")®! for a certain I';-module
M. Tt follows also from [Drl] (or by mlmlckmg the argument in section 4.5 in
[ChPrd]) that J(EF); = Zk 1 MYk @ E; (])( ) and that y; 5,1 < i <[ satisfy
@6). That y;x, and y; i, commute as operators on M if ky # ks is a consequence
of [J(E; iy J(E; icg] = 0 if by # k. 0

Proof of Theorem @l This is similar to the proof of theorem 5.4 in [Gul]. Let
M € H;. — modp. VVe define a linear automorphism 7' of M ®c|g) (C™)®! by

—3; —d; .
Tm®v) = my, " ez M@ vy, where Vi = 0,41 @ - @ v5,41 if V =

Viy @ Q. SA{'/\)Q admits an automorphism p defined by

r p
r A
(80) (Xzim) = E ( ) (5) Xilmfp‘] if i # 0,1 and similarly for p(H;,;),

p=0 p
. T . r
(81) (Xf_m) = Z ( ) ) pX(Tr D.J’ p(XS_’!,J) = Z ( D ) f—lX:—lm—p,j—l’
p=0 p=0
_ ' r _ _ . _
(82) p(Xl,T,j) = Z < D ) ﬁfXO,rf;mjfl? p(XO,nj) = Z ( D > ﬁpX —1,r—p.,j’
p=0 p=0
(83) p(Hl,r,j) = Z < ; ) ﬁ;‘)HO,Tfp,jflv HO T,J Z ( > Banfl,rfp,j
p=0 p=0
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Let ¢ : V"" — Endc(M ®¢ps,) (C")®') be the algebra homomorphism coming
from the Y module structure on M ®¢(s,) (C")®'. The next lemma is the crucial
part of the proof of Proposition

Lemma 9.1. Under the same hypotheses on the parameters as in Theorem [B.1],
the following equalities hold:

P(X3g) = Top(p(XEy)) o 2<i<n—1,
P(XE, ) = T2 o(p?(XE,) ) o T2

and similarly for H; ,; instead of XZ i

(84)

Proof. We give a direct, detailed proof of this equality similar to the first approach
to lemma 6.2 in [Gul]. We only need to prove it for » = 1 and for leﬁf

We have the following expressions for wf ¢ and w:l[l)f:

1 1
= Z S(Eja, Evjg) — ZS(EH,fa Hig),

1% 1
W:L_,Lf = _Z Z S(Ejn,ﬁEn—l,j,f) - ZS(En—l,n,fa Hn—l,f)-

Jj=1

Fix v =1, ® - ®uv, € (C")®. Suppose that ji,...,j, (resp. m,...,7.) are
exactly the values of j (resp. of n) such that i; = n (resp. ¢, = n —1). Then

T’(m@v) = ma;, PRr X 1:5,711 . -x;cl ® Vig. Set x;lljp = x;ll X ~xj;1,x;11wmc =
wpl-apt. Since X7 ¢ = J(X )¢ — My, we obtain:
_ k

(85) Xi\ (T2 (m®v)) = me St Vkerk @ ESY (vy)

Ay —1 ~1
(86) ZZ Ejo g, Erjr)(ma Tt seeip TN eme @ Vy2)

j=3

A -

(87) +ZS(E12’f’HLf)(m%,‘..,jpxmw..,ne ® V).

In the summation (BH), we can assume that k& = j, for some r, since otherwise
B =0
12’ (V42) :

(88)
p e )
_ -1 -1 -1 (dr
(Im) - Z mxj1,-~7jpx771 o xnb 1[ D ’yjr] "7b+1 Ty, €f g, ® E12 (V+2)
r=1b=1
p p )
-1 11 .
(89) + Z Z My - x]b 1[ Jb ’yﬂr] Jb+1 Ty e ©Fdr @ Fy ] (V42)
r=1b=1

90)  + > mday! [ apl L epr® B (via).
k=1
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The last expression is equal to 72 (J(X,!_;)¢—1(m®v)). As for the term on line
[®) above, it is equal to %Tz (S(En,l’n,f,l, anLff]_)(m ® V)) Therefore,
X (TP*(mev)) = @) + B + @) + T*(X,) 115 1 (mev)) — (1D

(The expression ([I02)) appears explicitly below.)
We need to decompose the sums (88) and [89). Sum (B]) equals

K p e b—1
__F -1 —1. . -1 kg —1
) Z m j17~<~7jpzn1 Ty 1( +< )5% e Jrgm, Wb+1
r=1b=1k=0
—lg, . (dr)
Ty, €f.jr @ E1y” (V42)
P e
__EZ ma=! T B e R DA ®E(77b)(0. o (V42))
-9 J1sedp ML Mo—1 0y Tnpp1 ne Cfmp € fodr 12 Nysdr (V42
r=1b=1
e

p
Kk -1 21 -1 =11 —1 (n)
D) Z MTjipTm " Ty T Topyr " Tne efmpef+1,5, ®Lqy (Um,,jT(V+2))~

As for the sum (89), it equals

(98) +

_ -1_-1 Ja)
- Z Z mx B 1[ Jb ’y]a]zjb-u TG, Togene ©Fda ®E (v42)
- b;éu,
- (a)
—1 —1 —1 —1 J
+Zmrj1 ..'Ija—l[ Ja Vialz;, ]a+1 T T 711, ne€fda ® E12" (vy2)
a=1
K p p d-—1
_ K -1 -1 g1 ko—1 -1 _
=73 Z Z mxj17-~-7jb—l( +¢ )gﬂb 936530856 T jyg1 e erdip T 5o eome €Foda
a=1b=1 k=0
b#a
® B3 (vi2)
P K d—1
—1 7]. k 7]_ k k —1
+ 2 M <§ > D (e, T g s g, + e,
a—1 a=1 k=0
a#ja

—1 d-—1

J) .

-1 -1 (Ja)

Lo N " dey(ept g, —eb—l,ja)>l‘ja+1,,4.,jpxm,...,nP_Ef,ja ® By (vi2)
b=1

Kd o~ -1 -1 -1 -1
= T Z (mx]'1,---,jb_1mjb Ojasdn (:Ejb+1a---;jp):rnl7---:neef7jbef_5(a>b)aja
=1 b=
=g
® B (04,5, (V42))
-1 -1 -1 -1 (Jv)
+mT; 1%, Tjyrja (T Jbg1seee0d ) Tni,.. ;Ueef»jbef+1*5(a>b),ja®E12b (o-javjb(v+2)))
- 15 (o)
-1 -1 J
+ Z < +5 Z dey(ep,j, — €p— 2»](1)) ML Gp L, me ©F da ® Ejp" (vi2)
a=1 253
Krd -1 -1 ) . -1 -1 E(Q) .
+ o Z Z MLj . ha—1%5a efua"ﬂavq(rjaﬂ,m,jpfm,m,ne)ef»q ® E13 (04,0(V42))
a=1 q=1
qija
rd (a)
-1 -1 -1 q
?Z Z 31, da—1%q ef—l,jao'ja,q(xjaH,...,jpxm,.“,ne)ef,q®E12 (Uja,q(v+2))v
B Q7Zja

where 6(a >b)=1ifa>band =0if a <b.
We now focus on wff (T*(m ® v)) and T?(w;'_ e (m® v)). Earlier, we have

used the equality Aw¢(T?(m ® v)) = —(@8) — [ 7). We can decompose (88) by
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considering the cases when E;; and Ej, act on the same tensorand and on different
ones:

1
n—2 _ _ k
(99) —(B8) = A ( 1 ) Zmmhl,...,jpwml,.‘.,neef,k ® E£2)(V+2)
A
2

k=1
n l P
(100) +500 3 Y oman! e neerara @EL (04,5, (ve2)),
=3 iqi:21:j b=1
n—2
A
(101) AT? (w1 g1 (m®v)) = —ZTQ (Z S(Ejng-1,En_1j5-1)(m® V))
i=1
A
(102) - ZTQ(S(Enfl,n,ffl»anl,ffl)(m®V))-

We observe that —([87) = (I02). As with (86), we can decompose (I0I)):

l
n—2 _ _ k
(103) @01 = —A ( 4 ) Zmlefm,jpxml,m,neef»k ® (Er(zjl n(v))+2

k=1

(104) - %T2

j=1 q=1 b=1

We note that @9) — [[03) = A (252) T2 (En—1,nf-1(m ®v)) and

AE G -1 —1,.—1 (9)
@@ = - SN mepager 1 o wnag eyt L @B (04, (vi2).
j=1 a=1 _b=1
=i
To obtain the last expression, note that iy # jq, np for any a, h since i, = j and we
consider values of j different from n and n — 1.
We now decompose the sums (@7) and ([@8) into three different sums. In the first

case, ¢ = jp # ja; in the second case, ¢ = np,; in the third case ¢ # j,,n, for any
a, h. The sum (@7) equals

Kd o -1 -1 -1 j
(105) - STS T magt oeriatien @t ) ey © BEY (05,5, (V42))
=iZa
rd - - - (1)
(106) + 5 Z Z ML 50 CFdaThartripTniseme Tnp T, ©fmy @ E12" (0o, (V+2))
a=1h=1

P P
(108) rd E E ma; o x e 1.0y (@) Dyt ef;
9 J1seda—1Vip €F=13a%da06 \ Loy, . ip ) Tn1seme ©F 00

® EDY (04,5, (V42))
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D e
(109) +id E E ma;t o xnte LT Cagt Ty, x5 e
2 J1seeoda—1Ymn CF=Liaria 1, iptni,ometnntia € mn
a=1h=1

® Egh) (Uja Mh (V+2))

(o) +4

D l
—1 —1 —1 —1
Z MTji . ga—1Tqg ©Ff~15aLjoyq,....5pTn1,..me ©F—1,0
a=1 q=1
qFjdn

DB (0),.4(v2)).

The following equalities hold since we are assuming that A\ = kd:

(ED) — (), (107) — (), (D) — — (10, () — — (@),
@) - ([0, @) - - (05). @) - - (105

Using our assumption that 8 = & — )‘(”4_2) + (Cf_CQf“)d

Xf:l,f (Tz(m ® V)) =T? <(X:zr—1,1,f—1 + (B + 5f—1)X:{—1,f—1)(m ® V))5

, we can prove that

XlJr,l,f(TQ(m®V))_T2(X:71,1,f71(m®v))
= B3) + @) + @D -T*(X,/ | 1 s_1(m&V))
= @) + @D + T*(J(X,;_e-1(m@v)) =T*( X)) 1 ¢ 4 (m@v)) + B6) + B7)
= @) +--- + @8) + (B6) + 87) + ([I0I) + ([T02)
:(m])+...+m_|_(m_|_...+(m)_m_m
+ 87) + (I02) + ([I03) + ([104)
= (87 + ([I02))+ (@) + [@09)) + ([@2)+ [@106)) + (@) + ([L08)) + ((@5) + ([T035))
+ (@6) — @9) + (—(@00) + (I07)) + (([04) + [10)) + (I03)
= (@6) — @9) + ([@03)

- (t - (n ; 2) + d(cf_12_ CHI)) T?(Ep-1nt-1(m@v))

= (Bs + Br-1)T? (er;l,ffl(m ®v)).

Using the equalities (84]), we can extend ¢ to an algebra homomorphism ?zg —
Endc(M ®¢(s,] (C™)®") (also denoted ¢) by setting @(X(fm.) =To @(p(X&T’j)oT_l.
We have thus constructed a functor Hy (I';) — modg — Yf{)’g — modfiﬁw. The
proof that it is an equivalence of categories when [+2 < n follows the same approach
as the second part of the proof of theorem 5.4 in [Gul].

Let N € ?fg —mod™L. Since N is a module over Y and over sl (C[u*!] x

Ltriv®
I), it is equal to M ®¢(s, (C™)®' for some I';-module M, which is also a module
over H,(T;) and C[z7',..., 2] x T;. We have to show that these two structures

can be glued together to give M a structure of a module over H; o(T';).
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Fix 1 <j,k <1,j # k. We choose v to be the following generator of (C™)®" as
a Usl,-module: v=10;, Qv;, ® - Qv;, where i, =b+3ifb<jb#k, i =b+2
ifb>j,b#k i; =2and i, = 1.

We can express w, ¢ explicitly in the following way

. 1
w2 |((Cn)®l = _Z ; 81gn(2 — b)S(E:}b’f, EbQ’f) — ZS(ESQ f, Hg f)
b#2,3

We find that (X, ¢ Xog, — X0+,f2X27,1,f1)(m ® v) equals

MN

3
Il

l

Z mxrefr" 1’Tef175y5®E?(>;)Er(fl)(v)7mef1 sysxrefz 1T®E(T)E(s)( ))

1s=1

A[ Wy g, s Xo g, ) (M@ V)

[l'kefz lkayjefhj]@Eg,gE ( ) (5f1 f22mxjef2 1jef1’k®E31 En ( )
A

5f1,f2 12mxkef2 1kef1,]®E§1)E(J)( )

A A
=m { [Tre -1k, Vi€s1j] = 051,12 TiOjh@fa =1 k€ 15 =01 fa—1 G TRTjK 1€ 2Lk
RV,

where v = E(j)E,(ﬁ) (v). We know from relation ([69) that [X, ¢, X(,]

1,4 J': = 0’ S0
the last expression is equal to 0. Since V is a generator of (C")®! as a Usl,,-module
it follows, from Lemma and our assumption that A = kd, that

m <[$kef2—l,k7yjeflaj}

Kkd rd
012 TGOk Fa-1 k€ G~ Ofs fa 15 ThOjkC S j€ 1k | = O-

Summing over fi, fo = O 1,.

..,d — 1 and using § e Oefkefj =3 § f= ngfgf
d—
Zf—loef—l,keﬁj = dE = Og ffk fgjf yields relation (G0)

We now consider the relation between x; and ). Setting

n

1 1 1
e =g Z S(Erig, Eig) + §S(E12,f7E21,f) 1 Z S(Esi¢,Eisg) — §H12f,
i=3 i=3

we have that H; 1 j;(m ® v)

= J(H;)j(m®v) — Ay g(m @ v) with J(H,
Yo mVres @ Hi (v).

i)(m®v) =
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Fix k, 1 < k < [. We now choose v to be equal to v = v;; ® - -+ ® v;, with
ip=b+2ifb<k,ip=0+1if b > k and i, = 1. Note that v;, # 2,n,n —1Vb
since [ +1 < n — 1 by assumption. We obtain:

1

. 1~ .
(111) B nlv) = 5 D ERER (v) = Sou BV (V) it £ k,
b=3

B = (“72) B5 )

We need ([II1)) to obtain equation (I12]) below. We compute that (Hl,l,fX(Tf _
X ¢Hie)(m ® v) equals

l l

l l
DD mepiwrer Vs ® HYEL (v) = Y mep Yiep w © B HY (v)

r=1s

=1
e Xl (m @ v)

s=1r=1

l
A
= —mey k Ve rar @ ESHY (v) + 3 > mases 1 e ® ok By (v)

r=1
r#k
n—2 (k)
+ A 1 mesxr @ £, (V)
\
(112) = —mYreprrres 16 @V + ) Z MTyOfr€f—1,k€fr ®V
T2k
n—2 ~
+ A < 1 ) magefs_1x @V,

where v = E,(ﬁ)(v) We want to obtain a similar relation with Hj 1 ¢ replaced by
Hn—l,l,f~
From the definition of v,,_1 ¢—1,

12 1
Vn—1f-1 =7 Z S(Evng-1,FEnpe-1) + §S(En71,n7f717 Enn-1¢-1)
b=1
1 n—2 1 )
1 bz—; S(Epn-1£-1,FEn-1p£-1) — §Hn71’f,1~

We can check that [E(Tl), Un—1](v) =0if r # k and

n



QUANTUM ALGEBRAS AND SYMPLECTIC REFLECTION ALGEBRAS 191

() v) ) = - §j§jEwhﬂ” - (") B
2

n—2 k
Z%sm - ()

(113) _=
s;ék

The equation (II3)) allows us to compute that [Hy,—1,1,¢-1, thf}(m ® V) equals:

l
= Z (mefﬂ‘xref 1, sys (29 HnS)lE(T)( ) meffLsysef,Txr & EY(S)HY(LS_)l(V))

r,s=1
“An—15-1, Xggl(m®v)
= Mmxpes_ 1kykef 1k®H( ) ET(L’?(V)
P n—2
(114) —5 > may, (Ukrefl,kef1,r)®E7(ﬁ)(V)—( 1 )ef L ® B (v).

r=1
r#k
From relations (67), (74), (75) and (1) in {/f\l’g, we know that

X(;ﬁ,f = [Hl 1E, X, ] (ﬁf - )Hl,fX(;ff - ﬁfX(;r,le,f
= *[Hn—1,1,f—1, Xl = BraHn 151 X5 e + (Br-1 = N X eHn 151

Applying these two expressions for Xar 1¢ to m ® v, using equalities ({12), (I14)
and the fact that Hl,fX(—)‘rf(V) =0 and X(;ern_Lf_l(V) = 0, we obtain that the
expression

l

A _ n—2 ~
mYprrer_1x @V — 5 merokref,l’kef,rv - A < ) mrpefs 1V
2k
- BfX(;fle,f(m ®v)
equals
3\
merYpes_1,, @V + 3 ;mfkakref—l,kef—l,r RV
Ak
n—2 ~ +
+A 1 mxges_15 QV — ,Bflenfl)fleO’f(m@V).
Therefore,

1
A -
mlzr, Vilef—1 @V + 5 Z m(Trefk + Th€f_1k)0kr€f—1k @V

r=1
r#k

n—2 - ~
+A ( 5 ) mxgef 1 XV + (ﬁf71 + ﬁf)mxkef,;hk ®v=0.
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Since Vv is a generator of (C")®! as a 4sl,-module, it follows from Lemma

and our assumption that 8y = £ — A(n;z) + (Cf_czf“)d, A = kd that

13
2
l

Kkd
m([xkayk]efl,k + ) Z(xref,k + Tref 1 k)0kr€f—1k
2k

d
+(t+ §(Cf—1 - Cf+1))xkef—1vk>

vanishes. Taking the sum over f =0,...,d — 1, we obtain that
1 d—1 =
m([zk, Vi +tor+ ZZ Tr+Cx5)8 "o+ 5 cha (€a+1,k —€a—1,k)Tk) = 0.
.;#i‘ s=0 a=1
Therefore, we have proved that the H, (I';)- and the C[z{?, ..., 2] x [;-module

structure on M can be glued to yield a right module over Ht, (T'}). To prove
that SW is an equivalence, we are left to show that it is fully faithful. That SW
is injective on morphisms is true because this is true for the Schur-Weyl duality
functor between C[S;] and isl,, so suppose that f : SW(M;) — SW(M,) is a
?f:g-homomorphism. Schur-Weyl equivalence for sl,,(C[u*!]) and Y;* says that it
must be of the form flmi®v) =g(mi)®v,Ymq € My, where g € Home (M, Ma)
is a linear map which is also a homomorphism of right C[z7!, .. :clil] and H, (I')-
modules. Since Hy ¢(I';) is generated by these two subalgebras g is even a homo-
morphism of Hy ¢ (I';)-modules. Therefore, f = SW(g) and this completes the proof
of Proposition O

It was explained after Proposition (L3l that Hy c(I'1) = Hy ¢(x,c,=0)(I'1). There-

fore, it is reasonable to expect that Y” d depends only on two parameters. This is
confirmed in the next proposition. Let [3 =2 Z?:ol B; and let YZ% be the algebra
defined as ?;Z with all the 8; and A — j3; replaced by 3 in relations (7H)(78)

except that (78] and (@) for the cases j = 0 and j = d — 1, respectively, must be
replaced by

[Xg:rl—&-l,O? Xf:rz,o] - [XS:7'1,0’ Xi‘rrg—&-l 0]
~ A
= (B_§) 1,72,0 XO'r‘lO (5—'_ )XO'rl OXl ,r2,07

[X(;r1+1 d— 1"Xv17r27 } - [X(;,rl,d—17Xl7r2+l,O]

_ ~ A _
(54' ) 12,050, .d—1 (ﬁ_§)X0,r1,d71X1,r2,0'

~

Proposition 9.7. The following formulas define an algebra isomorphism ¥ : Y

un,d .
Y/\,E for any X, B:

=

Im&

_ - s AN .
‘I’<Xo,r,j>zz<g>2 (ﬁo+-~-+ﬁj—J§> Kooy Jor0<j<d—1,

s=0

T ‘ )\ s ‘
Xo.r) Z( >28 <50+"'+5j—1(31)2> X gy for1<j<d,



QUANTUM ALGEBRAS AND SYMPLECTIC REFLECTION ALGEBRAS 193

T S

r s A .

Wﬁhm)=§:<s>2 Q%+”.+mjﬂ§><mnﬂdﬁr0§]§d—L
s=0

For1<i<n-1,

r ) A .
V(X5 )= <S>(250 4+ 28514 8— (25 — 1)§>Xj;_s,j for0<j<d—1

s=0

and similarly for H; . ;

In view of Proposition 3] and the comments preceding it, the next corollary is
not surprising.
Corollary 9.3. ?;_’g is isomorphic to an affine Yangian ?;\‘,dﬁ, for sl,q.
fr, H;, for 0 <i<nd—1,r € Z>o and an isomorphism
for0<i<n—-10<j5<d-1, Xij?“,j — Xj_n_H’T for
for 0 < j < d-1 (and

?f\%, is generated by X
sends X{’:TJ — X;;LHW
1<i<n-10<j<d-1, X;,.5— X(;+1)n,r
Xa?n,r = X(;,r)

In the definition of affine Yangians in [Gu2], the parameter 5 appears in relations
involving XO%T, st and also ngr, Xff_lys. However, the relations before Proposi-
tion involve only X(fr and X fs. This is not a contradiction; affine Yangians
can also be defined in such a way: this is explained in section 3 in [FENR].

As is explained in [Gu2], when A = 0 and 8 # 0, the affine Yangian {/onﬁ

is isomorphic to sl,(D(C*)), the universal central extension of sl, over the ring
D(C*) of differential operators on the torus C*. Corollary then implies that
?gfo, 5 1s isomorphic to g[nd(D((CX)) when ! # 0. This is a consequence of the
following observation: D(C*) x T' & My(D(C*)), an isomorphism being given on
the generators of D(C*) x T" by

do 0 0 01 0 ---0
0 d9—1 0 e : S0 1

w — , Ur> 0
0 . 0 do—(d—2) 0 0 . .0 1
0 0o - 0 do—(d—1) 2 0 -~ 0 0

and the generator ¢ of Z/dZ goes to the diagonal matrix with entries 1,1, (72, ...,
¢=(@=1)_ Here, we view D(C*) x T' as the algebra generated by w,u,u~! and
& el,j=0,...,d—1, with the relations wu —uw = u, éw = w¢ and &u = (ué; we
view D(C*) as the algebra generated by 0, z with the relation dz — 20 = z. Note
that u¢ is mapped to the diagonal matrix with entries z, z, ..., z on the diagonal.

9.3. ng(Z/dZ) as a subalgebra of LY‘;\)@. Since Hyc(I')) — Hy ('), we may
expect ng(Z/dZ) to be isomorphic to a subalgebra of LYf\’ﬁ. This is indeed true.

Definition 9.8. Let L ; be the subalgebra of LYf\l@ generated by X ., H; ,.;,

i
Xoi Xoppryfor1<i<n—1,r>0,0<j<d-1,
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In order to prove Theorem [3.3 below, we need to construct a Schur-Weyl functor
between L4 Ap and Hie (I').  As in [Gul], we have to compute how X ; acts

on M ®c[g,] ((C”)®l for a right Hyc(I';)-module M. For m € M, we find that
[J(H1)e, Xgg_1](m @ v) equals
1 l
> may! Vieri ® B (v) + > mlzt Viler-1rer; ® HY B (v)

k=1 jk=1
1 l
_ k
2 S mlye + oy yrn)epr @ B (v)

k=
K l d—1 . ‘ 4 ‘ i
-3 m (Z@‘%—l + wwfwjkez) esrer; ® HYED) (v)

J,k=1 =0
J#k
l 1 l
:;mykeﬁk(}@E +§;mxk ,yk xkefk®E( )( )

d
—% mx,, a]kefkefjébH( )E(k)(v)

in
jk=1
ik
l
= " myres i @ ESY(v)
k=1
O] [EIENS 3 oo
i
d—1
_ k
+ ) deary (e — ea—l,k)> ek ® By (v)
a=1
Kkd i) (ke i) (K
S e, (BB — BB 0
gy
1
t
:Zm(yk+§$k Jer s ® By (v) mek (cf — cpp1)ers ® EL (V)
k=1 k 1

l
Kkd _ K

T Zk::l may; e er o, ® B (V)

7k

k ] k

S aiepers © (EGEY - BDED) (v

J#k

l

!
t
:Zm(yk—l— §xk )efk®E( )( —I—/de may ey ey ®E(J)E( )(v)
j?'fk
+7 Z me,;lef,kef,jQ?E J E(k) mek cr —Cii1)ey, k®E1n (v).

j,k=1a=3 k 1
17k
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We compute that [vq ¢, X(;ffl](m ® V) equals

1 n l
3 2 2 maitersers © BUEL (Y mek eri ® EX(v)
=37 fms k=1
l
+ Z may, efJefk®E§j2)E( Zxk efjefk®H(j)E(k)( ).

Jk=1 Jk=1
J#k J#k

Combining all these computations and using relations (Q),([74) along with the
assumption that A = kd, ﬁf = b o) A2 e find that Xo1g1(m®

V)= Zk 1 MYkCf.k ®Eln Zk 1Mmeyf—1,kYk ®E£n)'

We have the following analog of theorem 8.4 in [Gul].

Theorem 9.2. Suppose that A = kd and B; = L — )‘(n472) + (Cj_62j+1)d (where
co = 0). There exists a functor SW : Hy (")) — modg — ]Lgl\ﬁ - modlimt which is

given by SW(M) = M ®c(s,] (C™)®'. This functor is an equivalence of categories if
l+2<n.

Proof. That the functor SW is well defined is a consequence of the calculations
above concerning the action of X ; on V!, The rest of the proof follows the same
lines as the proof of Theorem O

Theorem 9.3. Suppose that A = —%,Zgj = —% Z Cjk (Br — 7) b= ()\ bgl,

, ,EE(FI) and f = X Z?;S(Qﬁj A+ A= -2 Z;l:é Bj + 3d)‘. Then the algebras
L‘i,g and D%B(Z/dZ) are isomorphic.

This is a generalization of theorem 10.1 in [Gu2].

Proof. Our strategy is to construct an epimorphism 7 : D% 5b (Z/ dz) — L4 N8 and
to use Corollary Bl to show that it is injective. We start by observing that
we have a homomorphism « : gl,(C[Z/dZ]) — ]Lﬁl\’ﬁ which allows us to de-
fine unambiguously elements E;;(v), Eijs € Lf\l”g as images of the correspond-
ing elements in g[n(C[Z/dZ]). In particular, E;;¢ = éZi;é TP B (&%), Hig =
le( ) + I R (B (€F) — Eipria(€Y) for 1 < i < n—1 and Hop =
d k 1 ka( Enn(€*) — CkEll(fk)) + %(Enn(l) - Ell(l))'

To extend 7, we start by setting m(E,i(u)) = Zd 1XJr T(Eino1(v)) =
f 1[X071k’X7;1,k] and 7T(En2( )) = Zd I[X(TJ’XJF ”(E ) =
[[Xl_kJrl,X(Il,k],X;_Lk} Then we compute that | ( u)), (Egn 1( )]

equals
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d—1

> [t X3, (X e Xawad Xl
0

<.

d

|
-

I
g

[[[Xtik-}—l? XlJr,k+1]7 [Xik+17 X(;l,k]] ’ Xr;—l,k}

T I
= o

I
N

(X sesns Xoowach Xomiae] + [ [Xreens [Hoae Xl Xo i

k=0
d—1
= <[H0,1,k7X7:—1,k] + [ XTer1s —Xf1,k+1
k=0
(Bt = N X Hos = Bt HoacXera), X1l
Z ik BeHox X, 4 — (Br — /\)Xyll,kHO,k)
—0

+ Z [(A = Bry1)Hi 1 Hoxe + Brrr HopcHi ey, X, 1 4])

d—1 d—1
A

_ A _ _ _
(115) :Z (Xn—l,l,k+ (ﬂk - 5) Xn—l,k+§S(Xn—1,kuH0,k)) "‘Z )\Hl,k+1Xn—1 k

k=0 k=0

We set F(En (v )) = é E”,k 0 [[ 0,1, B l, EnLk], where the element E,; k
is given by Ep1x = “ X, 1,k7Xn72,k]7 . -],Xik] Then

d—1
m(Enm(v) ==Y ([[X51JaEn1,j+1]7En1,j]
(116) =0
1 _ _
+ 5 UXO 1,j’ Enl,j], Enl,.]] [[XO 1,j’ Enl,jJrl]a Enl,jJrl])'

We also set 7(Eqn_1(u)) = ijlo [E1n s [Xg1e Brn-1x]], where the elements
are simply given by i, 1k = {Xffkv [ 7[X:737k’X:72,k]"'H and Eynj =

[X1+J’[' [X: zjaX: 1J] . ]] Then
d—1

(117) 7 (Eppn_1(u)) = ([Eln,k,[Xar)k, Evniad]
k=0

+ [Einx-1 [Xafw ELnfl,kH) .
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We have to find [7(En1(v)), 7(E1n—1(u))]. Computing separately the commuta-
tor of each pair of sums in (II6]) and (II7), we find that they are all equal to zero
except the following one:

d—1
Z [[[X(ILJw Enji)s Bni sl [Brnge1, (XG0 El,n—l,kH:|7
§,k=0
which equals
d-1
Z |:|:[[XO_71,J7 Enl,j+1]7 Enl,j} ) Eln,kfl] ; [ngky El,nfl,k]]
5.k=0
d-1
+ Z |:Eln,k—17 [[[Xo_,u’ [ngkyEl,nfl,k“vEnl,j+1]7En1,j]]
k=0
d-1
= ([[[Xo_,m: E1jt1], Hnl,j]7 [XS:HP El,n—l,thl}]
=0
+ [[[X(Il,j»Hnl,j+1]aEn1,j]7 [XJ,HzaEl,n—l,Hz]D
d-1
- Z [Eln,jy |:[[HO,1,j7El,nfl,j+1}7Enl,j+1]7En1,j:|j|
=0
d-1
= (X015 Entj1)s [X0 410 Brn—1511]]
7=0
d-1
- Z [Eln,j, [[[Ho,l,j,El,n—l,j+1],Em,j+1],En1,jH
7=0
d-1
= ([[_Ho,l,j7El,n—l,j+1]7En1,j+1] + [Em,j, [[[Xl-tl,j+17E2,n71,j+1]
=0
= (Bj+1 — N B n—1,541Hoj + Bi+1Ho 3 Ern-15+1, Enijr1]s EnLj]D
a1
= Z ([[Xfr,1,j+17 E2n-1j+1)s Bn1j+1] + MB1n—1541Hoj + Bi+1[Ho s
=0
[E1n-1,j+1], En1j+1] + [Eings —AEBnn-1j+1En15 + Bj+1[Enn—1,4+1, Enl,j”)
a1
(118) =" (— J(Enn—1)j+1 = A0 515 Bain-1j+1]s Bny ] + ﬁj+1En,n71,j+1)
=0

d—1

+ Z (/\En,n—l,j+1(Hn1,j — Hp;) + /\El,n—l,j+1En1,j+1)-
j=0
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Using (II5) and ([II8)), we conclude that [W(Enl(v)),ﬂ'(El)n,l(u))} - [W(Eng(u)),
W(Eg)n,l(v))} equals

d-1 N N
- Z (Xn—l,l,k + (Bk - 5) X1kt §S(Xr?—l,k7 HO,k))
k=0

d—1
A _ A
+kz ( 25 Hl k+1;Xn_1)k)+J(En7nfl) (ﬁk - _) nnl,k)
A -1 [n-2
Z i z:; ]n 1k7 nj, k)+S( n—1 2k;En,nfl,k)"i'S(En,nfl,k;HnLk)
)\ —1
+ Z ( Epn-1x Hix) + S(E1n-1x Fnix) = S(En2x, Fon-1x))

u
||
= o

I\Elﬂy

Epn-1x Huix-1— Hox—1) + S(E1n—1x En1x))

k= 0
d 1 5

(2( k- —> nan—tic + 55(1 = ¢ (S (Bun-1(€), En(67)
k=0

+S(En,n71(€k)aE22(€7k))))

)\d—l n—2
—52 > S(Ejn-110 Bnja) +S(Hu 124 Enn 1) +S(Bnn 116 Hu1 i) | -

k=0 \ j=1

The last expression is exactly what one obtains by applying 7 to the right-hand
side of equation ([BH) (except for the first term) in the case a = n,b = 1,¢ =
n —1,d = 2 for the algebra D%E(Z/dZ).

In order to verify that 7 respects relation (36]), we now compute that [W(Enl (u)),
7r (Eg,n,l (v))] equals

d-1 d-1
XKoo (X1 X ) Xomagl ] = D0 | s Xifin Xl X ]
7,k=0 3=0
d—1 d—1
= [[ijﬂa Ho 1], X;—Lﬂ = - Z[Xl_,l,j+1 + Bj+1X1 541 Hoj
i=0 =0
- (ﬁj-i'l - /\)H07JX1_J+17X7: 1,J]
d—1 =g _ ‘
= — /\ZX_ X_)J+1 = Z ZCZS(W(En,n—l(Eiz))aT(E21(€Z)))'
=0 i=0

The other cases of relation [B8]) for arbitrary a # b # ¢ # a # d # ¢ and of
relation ([B6]) for arbitrary a # b # ¢ # d # a follow from the two cases above.
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Let ¥; : L ; — Endc(V') be the algebra map coming from the L§ ;-module

structure on V! given by Theorem Then one can check that ¥; o m = ®; with
®; as defined at the end of section Bl From Corollary Bl we can deduce that m
must be injective. O
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