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QUANTUM ALGEBRAS AND SYMPLECTIC REFLECTION

ALGEBRAS FOR WREATH PRODUCTS

NICOLAS GUAY

Abstract. To a finite subgroup Γ of SL2(C), we associate a new family of
quantum algebras which are related to symplectic reflection algebras for wreath
products Sl � Γ via a functor of Schur-Weyl type. We explain that they are
deformations of matrix algebras over rank-one symplectic reflection algebras
for Γ and construct for them a PBW basis. When Γ is a cyclic group, we
are able to give more information about their structure and to relate them to
Yangians.

1. Introduction

The theory of symplectic reflection algebras was introduced a few years ago
in the seminal paper [EtGi] of P. Etingof and V. Ginzburg. Since then, applica-
tions have been found in representation theory and in algebraic geometry; see, e.g.,
[Bo, EGGO, GoSt, GoSm]. One important example of such algebras is given by
the rational Cherednik algebras [Ch2], [GGOR], [BEG] associated to a complex re-
flection group W acting on the symplectic vector space h⊕h∗, h being its reflection
representation. A large class of symplectic reflection algebras are those associated
to wreath products Γl = Sl � Γ = Γ×l � Sl for Γ a finite subgroup of SL2(C).

In this paper, we introduce a new family of quantum algebras that we call Γ-
deformed double current algebras (Γ-DDCA). They are flat deformations of the

enveloping algebra of an enlargement of ŝln(C[u, v]�Γ), the universal central exten-
sion of sln(C[u, v]�Γ). They can also be viewed as flat deformations of Ugln(A1�Γ)
where A1 is the first Weyl algebra. We construct a PBW basis for Γ-DDCA by
using a Schur-Weyl functor which relates them to symplectic reflection algebras for
Γl. When Γ = Z/rZ, we are able to give a second definition of Γ-DDCA by realizing
them as certain subalgebras of a cyclic version of affine Yangians.

One can consider the general problem of studying spaces of maps X −→ g from
an algebraic variety to a semisimple Lie algebra g. When X is smooth and of dimen-
sion one, this leads to current Lie algebras g⊗CC[u], loop algebras g⊗CC[u, u

−1] and
their universal central extensions, the affine Lie algebras. When X has dimension
two, the most natural case to consider is the two-dimensional torus X = C× ×C×,
but two simpler cases are X = C × C× and X = C2. Quantizations of the corre-
sponding enveloping algebras are known as quantum toroidal algeras [GKV], affine
Yangians and deformed double current algebras [Gu2], respectively. We may also
consider singular varieties, and one of the simplest example is a Kleinian singularity
C2/Γ. We are thus led to consider the Lie algebra g ⊗C C[u, v]Γ and its universal
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central extension. We can also follow one of the main ideas in [EtGi] and replace
the ring of invariants C[u, v]Γ by the smash-product C[u, v]� Γ since it is believed
by ring theorists that the latter encodes more the geometry of the quotient C2/Γ
and of its (minimal) resolution of singularities than the former. This is another
motivation for studying Γ-DDCA.

The representation theory of quantum toroidal algebras was studied in [He1, He2,
VaVa1, VaVa2] and, via geometric methods, in [VaVa3]. We hope that understand-
ing the representations of Γ-DDCA will eventually lead to a better understanding
of quantum toroidal algebras and affine Yangians, but we will also exhibit new
phenomena which do not occur for these two types of algebras.

After recalling the definition of symplectic reflection algebras for wreath prod-

ucts, we devote two sections to the Lie algebras sln(C[u, v]) and ŝln(C[u, v] � Γ),
giving presentations in terms of families of generators and relations which are use-
ful later on. The main idea is to obtain presentations with only finitely many
generators and relations of low degree. The principal results here are Lemma 3.5
and Lemma 4.1. The latter is a modified version of a theorem of C. Kassel and
J.L. Loday [KaLo] which is useful for our purposes. We also mention some re-
sults pertaining to the first cyclic homology group of the smash product C[u, v]�Γ

since this space gives the center of the universal central extension ŝln(C[u, v]� Γ).
The following section is simply devoted to defining the Γ-deformed double current
algebras Dn

β,b. Section 6 contains one of the main results of this paper: we ex-
plain how to extend the classical Schur-Weyl functor to the double affine setup and
when it yields an equivalence of certain categories of modules; see Theorem 6.1.
When λ = 0, the Γ-deformed double current algebras are enveloping algebras of
Lie algebras closely related to sln with entries in a rank-one symplectic reflection
algebra for Γ: this is the content of section 7. Section 8 contains our second main
theorem: we prove that the associated graded ring of Dn

β,b is isomorphic to the
undeformed ring Dn

β=0,b=0, whence the name PBW property by analogy with the
classical Poincaré-Birkhoff-Witt theorem.

The second half of the paper (all of section 9) is devoted to the special case
Γ = Z/dZ. The symplectic reflection algebras for the wreath product (Z/dZ)×l �

Sl are rational Cherednik algebras, so they afford a Z-grading. This explains in
part why we can obtain more results in this specific case. We start by studying
certain degenerate affine Hecke algebras associated to Γl and then extend the results
of [Gu1] to the double affine trigonometric setting where we have a functor of
Schur-Weyl type (see Theorem 9.1) between modules for a localization of a rational
Cherednik algebra for Γl and a certain algebra which turns out to be isomorphic
to a Yangian for slnd (see Corollary 9.3). The main goal of section 9 is reached in
subsection 9.3 where we prove that deformed double current algebras for Z/dZ can
be realized as subalgebras of certain loop Yangians: see Theorem 9.3. This provides
another set of generators, which might be convenient in the study of representations.

Throughout this paper, we will assume that n ≥ 4: analogous results most
probably hold for n = 2, 3, but some definitions may involve more complicated
relations and certain proofs would have to be modified accordingly.
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Versailles-St-Quentin-en-Yvelines for their hospitality while this paper was written.
The author is now supported by an NSERC Discovery Grant.

2. Symplectic reflection algebras for wreath products

Isomorphism classes of finite subgroups of SL2(C) are known to be in bijec-
tive correspondence with affine Dynkin diagrams of type A,D,E via the McKay
correspondence. We will denote by Γ such a subgroup. For instance, the group

corresponding to the Dynkin diagram of type Âr−1 is the cyclic group Γ = Z/rZ.
In this section, we recall a few definitions and facts about symplectic reflection
algebras for the wreath product Γl = Sl � Γ of Γ with the symmetric group Sl. Let
ω be a nondegenerate symplectic form on U ∼= C2 and choose a basis {x, y} of U
such that ω(x, y) = 1. We will denote by {xi, yi} the same basis of C2, this time
viewed as the ith direct summand of U⊕l. Note that Γl acts on U⊕l.

The definition of a symplectic reflection algebra depends on two parameters:
t ∈ C and c = κ · id +

∑
γ∈Γ\{id} cγγ ∈ ZΓ, which is an element in the center ZΓ of

C[Γ]. We have adapted the definition of the symplectic reflection algebra Ht,c(Γl)
from [GaGi]. For γ ∈ Γ, we write γi for (id, . . . , id, γ, id, . . . , id) ∈ Γl, where γ is in
the ith position.

Definition 2.1. The symplectic reflection algebra Ht,c(Γl) is defined as the algebra
generated by the two sets of pairwise commuting elements x1, . . . , xl, y1, . . . , yl and
by τ ∈ Γl with the relations:

τ · xi · τ−1 = τ (xi), τ · yi · τ−1 = τ (yi), i = 1, . . . , l, ∀ τ ∈ Γl,(1)

[xi, yi] = t+
κ

2

l∑
j=1

j �=i

∑
γ∈Γ

σijγiγ
−1
j +

∑
γ∈Γ\{id}

cγγi, i = 1, . . . , l,(2)

where σij ∈ Sl is the permutation i ↔ j. For i 
= j and any w1, w2 ∈ U,wj
i ∈

span{xi, yi}:

(3) [w1
i , w

2
j ] = −κ

2

∑
γ∈Γ

ω(γ(w1), w2)σijγiγ
−1
j .

To simplify the notation, we will write ωx
γ = ω(γ(x), x), ωy

γ = ω(γ(y), y), ωx,y
γ =

ω(γ(x), y).
It is possible to filter the algebra Ht,c(Γl) by giving degree 1 to the generators

xi, yi, 1 ≤ i ≤ l, and degree 0 to the elements of Γl. This filtration will be denoted
F•(Ht,c(Γl)) and the corresponding associated graded ring gr

(
Ht,c(Γl)

)
.

Theorem 2.1 (PBW Property, [EtGi]). The canonical map Ht=0,c=0(Γl) −→
gr
(
Ht,c(Γl)

)
is an isomorphism.

3. Double current algebras

Before defining Γ-deformed double current algebras in section 5, we need to

prove a series of lemmas for the Lie algebra ŝln(C[u, v] � Γ), the universal central
extension of sln(C[u, v] � Γ). In this section, we treat the case Γ = {id}. We
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will need to assume that n ≥ 4 in this section and, a fortiori, for the rest of the
paper. The first lemma is similar to proposition 3.5 in [MRY] and should admit
an analog for other semisimple Lie algebras; however, we doubt that Lemma 3.2
admits such a generalization, except perhaps by adding a few relations. We start

with a theorem which gives a description of ŝln[u, v]. We will denote by Ω1(C2) the
space of polynomial 1-forms on the affine plane C2 and by d(C[u, v]) the space of
exact 1-forms on C2.

Theorem 3.1 ([Ka]). The Lie algebra ŝln[u, v] is isomorphic to the Lie algebra

sln[u, v] ⊕ Ω1(C2)
d(C[u,v]) with the following bracket (where (·, ·) is the Killing form on

sln):

[m1⊗p1,m2⊗p2] = [m1,m2]⊗p1p2+(m1,m2)p1dp2, ∀m1,m2 ∈ sln, p1, p2 ∈ C[u, v]

and the elements of Ω1(C2)
d(C[u,v]) are central.

We denote by Ĉn−1 = (cij)0≤i,j≤n−1 the n × n Cartan matrix of affine type

Ân−1:

Ĉn−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · · · · 0 −1
−1 2 −1 0 · · · · · · 0
0 −1 2 −1 0 · · · 0
...

...
...

...
0 · · · 0 −1 2 −1 0
0 · · · · · · 0 −1 2 −1
−1 0 · · · · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The set of roots of sln will be denoted by ∆ = {αij |1 ≤ i 
= j ≤ n} with the choice
of positive roots denoted by ∆+ = {αij |1 ≤ i < j ≤ n}. The longest positive root
θ equals α1n. The elementary matrices will be written Eij , Hi = Eii −Ei+1,i+1 for
1 ≤ i ≤ n−1 and Hij = Eii−Ejj . We set E+

i = Ei,i+1, E
−
i = Ei+1,i, 1 ≤ i ≤ n−1.

The following is lemma 2.5 in [Gu2].

Lemma 3.1. The Lie algebra ŝln[u, v] is isomorphic to the Lie algebra l which is
generated by the elements X±

i,r, Hi,r, X
+
0,r, 1 ≤ i ≤ n − 1, r ≥ 0 which satisfy the

following relations:

[Hi,r, Hj,s] = 0 ∀ 1 ≤ i, j ≤ n− 1, r, s ≥ 0,(4)

[Hi,0, X
±
j,r] = ±cijX

±
j,r ∀ 1 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1, r ≥ 0,

[X±
i,r, X

±
i,s] = 0, [X±

i,r+1, X
±
j,s] = [X±

i,r, X
±
j,s+1],(5)

[Hi,r+1, X
±
j,s] = [Hi,r, X

±
j,s+1] ∀ 1 ≤ i, j ≤ n− 1, r, s ≥ 0,

[X+
0,r, X

+
0,s] = 0, [X+

i,r+1, X
+
0,s] = [X+

i,r, X
+
0,s+1],(6)

[Hi,r+1, X
+
0,s] = [Hi,r, X

+
0,s+1] ∀ 1 ≤ i ≤ n− 1, r, s ≥ 0,

[X+
i,r, X

−
j,s] = δijHi,r+s, ∀ 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, r, s ≥ 0,(7) [

X±
i,0, [X

±
i,0, X

±
j,r]

]
= 0 ∀ r ≥ 0 if cij = −1, [X±

i,0, X
±
j,r] = 0 ∀ r ≥ 0 if cij = 0.(8)

Remark 3.1. In (8), when i = 0 or j = 0, we have defining relations only in the +
case.
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We will need a simpler set of generators and relations for the Lie algebra ŝln[u, v],
whence the importance of the next lemma, which is lemma 2.7 in [Gu2], except for
a minor difference.

Lemma 3.2. The Lie algebra ŝln[u, v] is isomorphic to the Lie algebra k which
is generated by the elements X±

i,r, Hi,r, X
+
0,r, 1 ≤ i ≤ n − 1, r = 0, 1 satisfying the

following relations:

[Hi,r, Hj,s] = 0, 1 ≤ i, j ≤ n− 1, r, s = 0, 1,(9)

[Hi,0, X
±
j,r] = ±cijX

±
j,r, 1 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1, r = 0, 1,

[X±
i,0, X

±
i,1] = 0, [X±

i,1, X
±
j,0] = [X±

i,0, X
±
j,1],(10)

[Hi,1, X
±
j,0] = [Hi,0, X

±
j,1], 1 ≤ i, j ≤ n− 1,

[X+
0,0, X

+
0,1] = 0, [X+

i,1, X
+
0,0] = [X+

i,0, X
+
0,1],(11)

[Hi,1, X
+
0,0] = [Hi,0, X

+
0,1], 1 ≤ i ≤ n− 1,

[X+
i,r, X

−
j,0] = δijHi,r = [X+

i,0, X
−
j,r], ∀ 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, r = 0, 1,(12) [

X±
i,0, [X

±
i,0, X

±
j,0]

]
= 0 if cij = −1,(13)

[X±
i,0, X

±
j,0] = 0 if cij = 0, 0 ≤ i, j ≤ n− 1.

An isomorphism k
∼−→ ŝln[u, v] is given by

X±
i,r �→ E±

i ⊗ vr, Hi,r �→ Hi ⊗ vr for 1 ≤ i ≤ n− 1, X+
0,r �→ En1 ⊗ uvr, r = 0, 1.

We will need a corollary of the previous lemma which gives a fourth presenta-

tion of ŝln[u, v]. It is an immediate consequence of Lemma 3.2 since we are only
eliminating X+

0,1 from all the relations, so we will use the same letter k.

Lemma 3.3. The Lie algebra ŝln[u, v] is isomorphic to the Lie algebra k which
is generated by the elements X±

i,r, Hi,r, X
+
0,0, 1 ≤ i ≤ n − 1, r = 0, 1 satisfying the

following relations:

[Hi,r, Hj,s] = 0, 1 ≤ i, j ≤ n− 1, r, s = 0 or 1,(14)

[Hi,0, X
±
j,r] = ±cijX

±
j,r, 1 ≤ i, j ≤ n− 1, r = 0, 1,

[X±
i,0, X

±
i,1] = 0, [X±

i,1, X
±
j,0] = [X±

i,0, X
±
j,1],(15)

[Hi,1, X
±
j,0] = [Hi,0, X

±
j,1], ∀ 1 ≤ i, j ≤ n− 1,

[X+
j,1, X

+
0,0] =

[
Hj,1, [X

+
j,0, X

+
0,0]

]
,(16)

[H1,1, X
+
0,0] = [Hn−1,1, X

+
0,0], ∀ 1 ≤ i, j ≤ n− 1,[

X+
0,0, [Hn−1,1, X

+
0,0]

]
= 0(17)

[Hi,0, X
+
0,0] = ci0X

+
0,0, [Hi,1, X

+
0,0] = 0 if i 
= 1, n− 1,

[X+
i,r, X

−
j,s] = δijHi,r+s,

[
[Hn−1,r, X

+
0,0], X

−
j,s

]
= 0,(18)

∀ 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, 0 ≤ r + s ≤ 1 (r = 0 if i = 0)[
X±

i,0, [X
±
i,0, X

±
j,0]

]
= 0 if cij = −1,(19)

[X±
i,0, X

±
j,0] = 0 if cij = 0, 0 ≤ i, j ≤ n− 1.

In the previous lemmas, the elements X±
i,r, Hi,r with i 
= 0 generate a Lie sub-

algebra which is isomorphic to sln[v], whereas those with r = 0 along with X+
0,0
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generate an isomorphic image of sln[u]. We would like to end this section by giving

one last definition of ŝln[u, v] in which these two algebras play a more symmetric
role, but before that we need to introduce one more lemma (which is probably
known to other people).

Lemma 3.4. The Lie algebra sln[v] is isomorphic to the Lie algebra f generated by
elements Eab ∈ sln,Eab(v) for 1 ≤ a 
= b ≤ n which satisfy the following relations:

[Eab,Ebc(v)] = Eac(v) = [Ead(v),Edc],

[Eab(v),Ebc(v)] = [Ead(v),Edc(v)] if a 
= b 
= c 
= a 
= d 
= c.

[Eab,Ecd(v)] = 0 = [Eab(v),Ecd(v)] if a 
= b 
= c 
= d 
= a.

Proof. We want to define elements Eab(v
k) ∀k ≥ 2, 1 ≤ a 
= b ≤ n, by setting

inductively Eab(v
k+1) = [Eac(v),Ecb(v

k)] for some c 
= a, b. This does not depend
on the choice of c, for if d 
= a, b, c and (21) is satisfied for k instead of k + 1, then:

[Ead(v),Edb(v
k)] =

[
Ead(v), [Edc,Ecb(v

k)]
]

=
[
[Ead(v),Edc],Ecb(v

k)
]
= [Eac(v),Ecb(v

k)].

We have to show that

(20) [Eab(v
i),Ebc(v

j)] = Eac(v
i+j) if i+ j = k + 1, a 
= b 
= c 
= a

and

(21) [Eab(v
i),Ecd(v

j)] = 0 if i+ j = k + 1

or i = 1, j = k + 1, when a 
= b 
= c 
= d 
= a.

We proceed by induction on k, the case k = 0 being true by the definition of f.
Assume that i + j = k + 1. Suppose that a 
= b 
= c 
= a and choose d 
= a, b, c.
First, suppose that i ≥ 1.

[Eab(v
i),Ebc(v

j)]=
[
[Ead(v),Edb(v

i−1)],Ebc(v
j)
]
=[Ead(v),Edc(v

i+j−1)]=Eac(v
i+j).

If i = 0, j = k + 1, then

[Eab,Ebc(v
k+1)] =

[
Eab, [Ebd(v),Edc(v

k)]
]
= [Ead(v),Edc(v

k)] = Eac(v
k+1).

We have established (20), so let us turn to (21). If a 
= b, c 
= a, choose d 
= a, b, c.
Then, if i+ j = k + 1 and, without loss of generality, j ≥ 2,

[Eab(v
i),Eac(v

j)] =
[
Eab(v

i), [Ead(v),Edc(v
j−1)]

]
= 0

by induction. Similarly, [Eab(v
i),Ecb(v

j)] = 0 if i+j = k+1, and, if i = 1, j = k+1,
we can show that [Eab(v),Eac(v

k+1)] = 0 = [Eab(v),Ecb(v
k+1)].

If a, b, c, d are all distinct and i+ j = k + 1, 1 ≤ i, j ≤ k, then

[Eab(v
i),Ecd(v

j)] =
[
Eab(v

i), [Ecb(v),Ebd(v
j−1)]

]
= [Ecb(v),Ead(v

i+j−1)]

=
[
Ecb(v), [Eac(v

i−1),Ecd(v
j)]

]
= −[Eab(v

i),Ecd(v
j)].

Comparing the first and last terms, we see that [Eab(v
i),Ecd(v

j)] = 0. If i = 0, j =
k + 1, then

[Eab,Ecd(v
k+1)] =

[
Eab, [Ecb(v),Ebd(v

k)]
]
= [Ecb(v),Ead(v

k)] = 0

by the previous case. The same argument works if i = k + 1, j = 0.
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Finally, if again a, b, c, d are all distinct, we have

[Eab(v),Ecd(v
k+1)] =

[
Eab(v), [Eca(v

k),Ead(v)]
]
= −[Ecb(v

k+1),Ead(v)]

= −
[
[Ecd(v

k+1),Edb],Ead(v)]
]
= [Ecd(v

k+1),Eab(v)].

Comparing the first and last terms shows that [Eab(v),Ecd(v
k+1)] = 0. �

Lemma 3.5. The Lie algebra ŝln[u, v] is isomorphic to the Lie algebra t that is
generated by the elements Eab ∈ sln,Eab(u),Eab(v) for 1 ≤ a 
= b ≤ n with the
following relations: For any w1 = a1u+ b1v, w2 = a2u+ b2v, ai, bi ∈ C,

[Eab,Ebc(w1)] = Eac(w1) = [Eab(w1),Ebc],(22)

[Eab(w1),Ebc(w2)] = [Ead(w1),Edc(w2)],(23)

[Eab(w1),Ebc(w2)] = [Eab(w2),Ebc(w1)] if a 
= b 
= c 
= a 
= d 
= c,

[Eab(w1),Ecd(w2)] = 0 = [Eab,Ecd(w1)] if a 
= b 
= c 
= d 
= a.(24)

Proof. We can define an epimorphism k −→ t by the formulas

X+
i,1 �→ Ei,i+1(v), X

−
i,1 �→ Ei+1,i(v), Hi,1 �→ Hi,i+1(v) for 1 ≤ i ≤ n− 1,

X+
0,0 �→ En1(u).

We have to check that this respects the relations (14)–(19). We will explain why
this is indeed the case for the first equation in (14), the first and second one in (16),
the first one in (17) and the second one in (18), but before we do this, we need to
deduce a few consequences of the relations in this lemma.

For a 
= b, we define Hab(w) by Hab(w) = [Eab(w),Eba]. Choose c 
= a, b, so

Hab(w) =
[
[Eac,Ecb(w)],Eba

]
= −[Ebc,Ecb(w)] + [Eac,Eca(w)]

= −[Ebc,Ecb(w)] +
[
[Eab,Ebc],Eca(w)

]
= [Eab,Eba(w)] = −Hba(w).

Starting from [Eab(w1),Ebc(w2)] = [Ead(w1),Edc(w2)] with a, b, c, d all distinct and
applying [·,Eba] gives the relation

(25) [Hab(w1),Ebc(w2)] = −[Ebd(w1),Edc(w2)].

Although we needed to assume that a, b, c, d were distinct to deduce this equality,
it is also true that [Hab(w1),Ebc(w2)] = −[Eba(w1),Eac(w2)] if a, b, c are all distinct,
due to relation (23).

Similarly, [Hab(w),Ebc(w)] = −[Ebd(w),Edc(w)] and commuting both sides with
Eca yields

[Hab(w),Eba(w)] = [Eca(w),Ebc(w)]− [Ebd(w),Eda(w)] = −2[Ebd(w),Eda(w)].

We now apply [Eab, ·] to both sides of this equation to get

(26) [Eab(w),Eba(w)] + [Ebd(w),Edb(w)] + [Eda(w),Ead(w)].

This is a useful equation since it helps us deduce the following for a, b, c all distinct:

[Hab(w),Hbc(w)] =
[
[Eab(w),Eba], [Ebc,Ecb(w)]

]
=

[
[Eac(w),Eba],Ecb(w)]− [Ebc, [Eab(w),Eca(w)]

]
= −[Ebc(w),Ecb(w)] + [Eac(w),Eca(w)]− [Eab(w),Eba(w)] = 0.(27)
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The first equation in (14) is now an immediate consequence of (27). Applying
[E12, ·] to 0 = [En−1,1(u),E21(v)] gives 0 = −[En−1,2(u),E21(v)]+[En−1,1(u),H12(v)].
Therefore,

−[H12(v),En−1,1(u)] = [En−1,2(u),E21(v)]

= [En−1,n(v),En1(u)] = [Hn−1,n(v),En−1,1(u)],

the last equality being a consequence of applying [·,En,n−1] to 0 = [En−1,n(v),
En−1,1(u)]. We now use [En,n−1, ·] again to obtain

− [H12(v),En1(u)] = [Hn−1,n(v),En1(u)] + 2[En,n−1(v),En−1,1(u)]

= [Hn−1,n(v),En1(u)] + 2[Hn,n−1(v),En1(u)] = −[Hn−1,n(v),En1(u)].

This implies that the second relation in (16) is respected. As for the first relation
in (16) when j = n− 1 or j = 1, it is a consequence of (25) with w1 = v, w2 = u.

The first relation in (17) and the second one in (18) follow also from (25) and
from (24).

To prove that it is an isomorphism, we would like to construct an inverse ξ. We
do this by using Lemma 3.3, which identifies k with the Lie algebra in Theorem 3.1.
We set ξ(Eab(u)) = Eab ⊗ u and ξ(Eab(v)) = Eab ⊗ v. Clearly, this defines a Lie

algebra map t � ŝln[u, v]. Taking the composite with the map k � t above yields

a homomorphism k � ŝln[u, v] which is the isomorphism given in Lemma 3.3 (see

the formulas after Lemma 3.2). Therefore, k
∼−→ t. �

4. The universal central extension of sln(C[u, v]� Γ)

For an arbitrary associative algebra A, sln(A) is defined as the space of matrices
in gln(A) with trace in [A,A]. This Lie algebra is perfect, so it admits a universal
central extension whose kernel is isomorphic to the first cyclic homology group
HC1(A) [KaLo]. When A is the group ring A = C[Γ], HC1(A) = 0 (see chapter 9
in [We]), so we conclude that sln(C[Γ]) is universally closed. Therefore, Theorem
4.1 gives a description of sln(C[Γ]). We will need to use the following theorem of
C. Kassel and J.L. Loday in the case A = C[u, v]�Γ. We will compute later in this
section HC1(C[u, v]� Γ).

Theorem 4.1 ([KaLo]). Let A be an associative algebra over C. The univer-

sal central extension ŝln(A) of sln(A) is the Lie algebra generated by elements
Fab(p), 1 ≤ a 
= b ≤ n, p ∈ A, satisfying the following relations:

Fab(t1p1 + t2p2) = t1Fab(p1) + t2Fab(p2) t1, t2 ∈ C, p1, p2 ∈ A,(28)

[Fab(p1), Fbc(p2)] = Fac(p1p2) if a 
= b 
= c 
= a,(29)

[Fab(p1), Fcd(p2)] = 0 if a 
= b 
= c 
= d 
= a.(30)

We will need to simplify Theorem 4.1 when A = C[u, v]�Γ. A generalization of
the following lemma, under the extra condition that n ≥ 5, is given by proposition
3.3 in [Gu3].

Lemma 4.1. The universal central extension ŝln(C[u, v]� Γ) is isomorphic to the
Lie algebra e generated by elements Eab(w), w = tu+ sv,Eab(γ), 1 ≤ a 
= b ≤ n, γ ∈
Γ, s, t ∈ C such that the following relations hold: If a 
= b 
= c 
= a 
= d 
= c and
wi = tiu+ siv, i = 1, 2:

Eab(w) = tEab(u) + sEab(v), [Eab(w1),Ebc(w2)] = [Ead(w2),Edc(w1)],(31)
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[Eab(γ),Ebc(w)] = [Ead(γ(w)),Edc(γ)], [Eab(γ1),Ebc(γ2)] = Eac(γ1γ2).(32)

If a 
= b 
= c 
= d 
= a:

(33) [Eab(w1),Ecd(w2)] = 0 = [Eab(γ1),Ecd(γ2)] = [Eab(γ),Ecd(w)].

Proof. We will introduce elements Eab(q) for any q ∈ C[u, v] � Γ and show that
they satisfy the relations in Theorem 4.1. When q ∈ C[u, v], the elements Eab(q)

can be defined using the map ŝln[u, v] −→ e given by Lemma 3.5 and Theorem
4.1 in the case A = C[u, v]. Suppose q = pγ, p ∈ C[u, v], γ ∈ Γ. We can assume
that p = ue1ve2 . Set e = e1 + e2; we will use induction on e. Choose a 
= b and
c 
= a, b; set Eab(q) = [Eac(p),Ecb(γ)]. We claim that this definition of Eab(q) does
not depend on the choice of c. (This is true when the degree of p is one according
to (32).) Indeed, suppose that d 
= a, b, c and e1, e2 ≥ 1 (the cases e1 = 0 or e2 = 0
are similar) and write Eac(p) = [Ead(v),Edc(u

e1ve2−1)]. Arguing by induction, we
can assume that [Edb(u

e1ve2−1),Edb(γ)] = 0. Then

Eab(q) =
[
[Ead(v),Edc(u

e1ve2−1)],Ecb(γ)
]
=

[
Ead(v), [Edc(u

e1ve2−1),Ecb(γ)]
]

=
[
Ead(v),

[
Edc(u

e1ve2−1), [Ecd,Edb(γ)]
]]

=
[
Ead(v),

[
[Edc(u

e1ve2−1),Ecd],Edb(γ)
]]

= [Ead(u
e1ve2),Edb(γ)] +

[
[Edc(u

e1ve2−1),Ecd],Eab(vγ)
]

= [Ead(u
e1ve2),Edb(γ)]

since [Edc(u
e1ve2−1),Eab(vγ)] = 1

2

[
[Hdc(u),Edc(u

e1−1ve2−1)],Eab(vγ)
]
= 0 by in-

duction.
Let us assume that [Eab(p1γ1),Ebc(p2γ2)] = Eac(p1γ1(p2)γ1γ2) for any a 
= b 
=

c 
= a and also that [Eab(p1γ1),Ecd(p2γ2)] = 0 for any a 
= b 
= c 
= d 
= a, any
γ1, γ2 ∈ Γ and any p1, p2 ∈ C[u, v] of total degree < e. We want to prove that the
same relations hold when the total degree of p1, p2 is e.

Step 1: Suppose that a, b, c, d are all distinct and e1 ≥ 1. Set p̃ = ue1−1ve2 , so
p = up̃. Using induction, we get

[Eab(γ),Ebc(p)] =
[
Eab(γ), [Ebd(u),Edc(p̃)]

]
=

[
[Eab(γ),Ebd(u)],Edc(p̃)

]
=

[
[Eab(γ(u)),Ebd(γ)],Edc(p̃)

]
=

[
Eab(γ(u)), [Ebd(γ),Edc(p̃)]

]
= [Eab(γ(u)),Ebc(γ(p̃)γ)]

=
[
Eab(γ(u)), [Ebd(γ(p̃)),Edc(γ)]

]
=

[
[Eab(γ(u)),Ebd(γ(p̃))],Edc(γ)

]
= [Ead(γ(up̃)),Edc(γ)] = Eac(γ(p)γ).

Step 2: Assume that a 
= b 
= c 
= d 
= a and e1 ≥ 1. There are three sub-
cases to consider: a, b, c, d are all distinct, a = c, b = d. In the first subcase,
[Eab(p),Ecd(γ)] =

1
2

[
[Hab(u),Eab(p̃)],Ecd(γ)

]
= 0 by induction. In the second sub-

case, choose e 
= a, c, d; then [Eab(p),Ead(γ)] = [[Eae(u),Eeb(p̃)],Ead(γ)] = 0 by
induction since deg(p̃) < e. The third subcase is similar to the second one.

Step 3: Choose a, b, c, d all distinct. We know from step 2 that [Eab(p1),Edc(γ2)]
= 0, so

[Eab(p1),Ebc(p2γ2)] =
[
Eab(p1), [Ebd(p2),Edc(γ2)]

]
=

[
[Eab(p1),Ebd(p2)],Edc(γ2)

]
= [Ead(p1p2),Edc(γ2)] = Eac(p1p2γ2).
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Step 4: Again, suppose that a, b, c, d are all distinct. Then

[Eab(p1γ1),Ebc(p2)] =
[
[Ead(p1),Edb(γ1)],Ebc(p2)

]
=

[
Ead(p1), [Edb(γ1),Ebc(p2)]

]
= [Ead(p1),Edc(γ1(p2)γ1)] = Eac(p1γ1(p2)γ1).

The last equality is a consequence of step 3.
Step 5: Assume that a 
= b 
= c 
= d 
= a. As in step 2, there are three subcases

to consider. In the first subcase, using step 2 twice, we get

[Eab(p1γ1),Ecd(γ2)] =
[
[Ead(p1),Edb(γ1)],Ecd(γ2)

]
= −[Ead(p1),Ecb(γ2γ1)] = 0.

In the second subcase, choosing e 
= a, b, d, we get [Eab(p1γ1),Eac(γ2)] =
[
[Eae(p1),

Eeb(γ1)],Ead(γ2)
]
= 0. The third subcase is similar to the second one.

Step 6: Suppose that a, b, c, d are all distinct. Then

[Eab(p1γ1),Ebc(p2γ2)] =
[
Eab(p1γ1), [Ebd(p2),Edc(γ2)]

]
=

[
[Eab(p1γ1),Ebd(p2)],Edc(γ2)

]
= [Ead(p1γ1(p2)γ1),Edc(γ2)]

=
[
[Eab(p1γ1(p2)),Ebd(γ1)],Edc(γ2)

]
=

[
Eab(p1γ1(p2)), [Ebd(γ1),Edc(γ2)]

]
= [Eab(p1γ1(p2)),Ebc(γ1γ2)]

= Eac(p1γ1(p2)γ1γ2).

Step 7: Finally, suppose that a 
= b 
= c 
= d 
= a and q1 = p1γ1, q2 = p2γ2. As in
steps 2 and 5, there are three subcases. In the first case,

[Eab(q1),Ecd(q2)] =
[
[Eac(q1),Ecb],Ecd(q2)

]
= [Ead(q1q2),Ecb]

=
[
[Eab(q1),Ebd(q2)],Ecb

]
= −[Eab(q1),Ecd(q2)].

Comparing the first and last terms, we conclude that [Eab(q1),Ecd(q2)] = 0. In
the second case, suppose that a, b, d are all distinct and choose e 
= a, b, d. Then
[Eab(q1),Ead(q2)] = [[Eae,Eeb(q1)],Ead(q2)] = 0 by the previous subcase and step 2.
The third case can be handled as the second one. �

As recalled earlier, the center of ŝln(C[u, v] � Γ) is known to be isomorphic to
HC1(C[u, v]�Γ); see [KaLo]. Consequently, the following proposition will be useful:

Proposition 4.1. The first cyclic homology group of C[u, v] � Γ is isomorphic to
Ω1(C[u, v])Γ/d(C[u, v]Γ), the quotient of the space of Γ-invariant 1-forms on the
complex affine plane by the space of exact forms coming from Γ-invariant polyno-
mials.

Proof. It is proved in [Fa] that the Hochschild homology of C[u, v]� Γ is given by:

HH0(C[u, v]� Γ) = C[u, v]Γ ⊕ Ccl(Γ)−1,

HH1(C[u, v]� Γ) = (C[u, v]⊗C U)Γ where U ∼= span{u, v} ∼= C2,

HH2(C[u, v]� Γ) ∼= C[u, v]Γ, HHi(C[u, v]� Γ) = 0 for i ≥ 3.

Here, cl(Γ) is the number of conjugacy classes of Γ. There exists an exact sequence
HH0(C[u, v] � Γ) −→ HH1(C[u, v] � Γ) −→ HC1(C[u, v] � Γ) −→ 0 and the first
map is given by the differential d, the space C[u, v] ⊗ U being identified with the
space of regular 1-forms on C2 ∼= U . �
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Proposition 4.2. The first cyclic homology group of C[u, v] � Γ can be identified
as a vector space with C[u, v]Γ.

Proof. The form ω (see section 2) allows us to identify Ω1(C[u, v]) with the space
V of polynomial vector fields on C2. (We assume here that ω(u, v) = 1.) There is a
contraction map V � C[u, v], so we can define a linear map Ω1(C[u, v]) −→ C[u, v]
given explicitly by usvrdu �→ rusvr−1, usvrdv �→ −sus−1vr. Since ω is Γ-invariant,
this restricts to a surjective map Ω1(C[u, v])Γ −→ C[u, v]Γ and the kernel of this last
map is d(C[u, v])Γ, which equals d(C[u, v]Γ). Thus, HC1(C[u, v]�Γ) ∼= C[u, v]Γ. �

These two propositions suggest that it may be possible to relate the enveloping

algebra of ŝln(C[u, v]�Γ) to Ugln(A1�Γ), where A1 is the first Weyl algebra: this
is explained in section 7.

In the last section, we will consider deformations of an algebra related to

Uŝln(C[u, v]�Γ); namely, Uŝln(C[u
±1, w]�Γ) when Γ ∼= Z/dZ is cyclic acts trivially

on w and on u by ξ(u) = ζu, ξ being a generator of Z/dZ and ζ a primitive d th-root
of unity. It is explained in [GHL] that sln(C[u

±1, w] � Γ) ∼= slnd(C[s
±1, w]): this

follows from the isomorphism of associative algebras given in loc. cit. C[u±1]�Γ ∼=
Md(C[s

±1]), where s = ud. It follows that HC0(C[u
±1, w] � Γ) ∼= C[s±1, w] ∼=

C[u±1, w]Γ and

HC1(C[u
±1, w]� Γ) ∼=

Ω1(C[s±1, w])

d(C[s±1, w])
∼= C · s−1ds⊕ C[s±1, w]wds.

Let g be the Lie algebra defined by the relations in Definition 9.5 when λ =
0, β = 0. The next proposition will be useful to understand the algebras in section
9.

Proposition 4.3. The Lie algebra g is isomorphic to ŝln(C[u
±1, w]� Γ).

Proof. See proposition 4.4 in [GHL] and also [MRY]. An isomorphism is given by

For 1 ≤ i ≤ n− 1, X±1
i,r,j �→ E±

i ⊗ wrej , Hi,r,j �→ Hi ⊗ wrej ,

X+
0,r,j �→ En1 ⊗ wruej , X

−
0,r,j �→ E1n ⊗ wru−1ej ,

H0,r,j �→ Enn ⊗ wrej − E11 ⊗ wrej+1 + δ0js
−1wrds.

Here, we identify the center of sln(C[u
±1, w]�Γ with HC1(C[u

±1, w]�Γ) as above.
�

Let a be the Lie subalgebra of g generated by X±
i,r,j, Hi,r,j, X

+
0,r,j, X

−
0,r+1,j for

1 ≤ i ≤ n− 1, r ≥ 0, 0 ≤ j ≤ d− 1. Via the isomorphism g
∼−→ ŝln(C[u

±1, w]� Γ),

we see that a contains ŝln(C[u, v] � Γ) with v = u−1w. As we have mentioned
earlier, we are interested in deformations of the enveloping algebra of a Lie algebra

slightly bigger than ŝln(C[u, v]�Γ). The projection g � g/〈
∑n−1

i=0

∑d−1
j=0 Hi,0,j〉 = g̃

is injective on a (note that
∑n−1

i=0

∑d−1
j=0 Hi,0,j is a central element of g), so we

can view ŝln(C[u, v] � Γ) as contained in the Lie subalgebra ã of g̃ which is the
image of a under the previous projection. The Lie subalgebra of g̃ generated by

X̃±
i,0,j, H̃i,0,j, H̃0,0,j, X̃

+
0,0,j for 1 ≤ i ≤ n−1, 0 ≤ j ≤ d−1 is larger than sln(C[u]�Γ).

(Here,˜denotes the image under the projection g � g̃.) For instance,
∑n−1

i=0 H̃i,0,j =
E11(ej − ej+1) 
∈ sln(C[u] � Γ). (Note that span{ej − ej+1|0 ≤ j ≤ d − 1} =
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j=1 C · ξj � C[Γ].) In the last section, we will explain how Γ-DDCA in the

cyclotomic case are deformations of Uã.

5. Γ-deformed double current algebras

We introduce in this section a new family of quantum algebras which are defor-

mations of the enveloping algebra of an enlargement of ŝln(C[u, v]� Γ) and which
are related to symplectic reflection algebras for wreath products of Γ via a functor
of Schur-Weyl type. (By enlargement of a Lie algebra g, we mean a Lie algebra
ǧ which contains a.) Before defining them, we need to introduce the Lie algebra

g̃ln(C[Γ]) which is the Lie subalgebra of gln(C[Γ]) spanned by sln(C[Γ]) and by

the elements Eaa(γ) ∀γ ∈ Γ \ {id}, 1 ≤ a ≤ n. The necessity to consider g̃ln(C[Γ])
instead of just sln(C[Γ]) will become clear in sections 6 and 7.

We will use the following notation: given an algebra A and elements a1, a2 ∈ A,
we will set S(a1, a2) = a1a2 + a2a1.

Definition 5.1. The Γ-deformed double current algebra Dn
β,b with parameters

β ∈ C,b ∈ ZΓ,b = λ · id +
∑

γ∈Γ\{id} bγγ is the algebra generated by the elements

of g̃ln(C[Γ]),Eab(t1w1 + t2w2) for 1 ≤ a 
= b ≤ n, t1, t2 ∈ C, w, w1, w2 ∈ U which
satisfy Eab(t1w1 + t2w2) = t1Eab(w1) + t2Eab(w2) and the following relations: If
a 
= b 
= c 
= a 
= d 
= c,

[Eab(γ),Ebc(w)] = [Ead(γ(w)),Edc(γ)],(34)

[Eaa(γ),Eac(w)] = [Eab(γ),Ebc(w)] = [Eac(γ(w)),Ecc(γ)],

[Eab(w2),Ebc(w1)] = [Ead(w1),Edc(w2)] + ω(w1, w2)Eac (b+ β)(35)

+
λ

8
ω(w1, w2)

∑
γ∈Γ

n∑
i,j=1

(
S
(
[Eab(γ

−1),Eij ], [Eji,Ebc(γ)]
)

+ S
(
[Ead(γ),Eij ], [Eji,Edc(γ

−1)]
))

−λ

2

∑
γ∈Γ

(ω(γ(w1), w2)− ω(w1, w2))
(
Ebb(γ

−1)Eac(γ) + Edd(γ)Eac(γ
−1)

)
.

If a, b, c are all distinct, then [Ecc(γ),Eab(w)] = 0, and if a 
= b 
= c 
= d 
= a, then
[Eab(γ),Ecd(w)] = 0 and

(36) [Eab(w1),Ecd(w2)] =
λ

4

∑
γ∈Γ

ω(γ(w1), w2)S
(
Ead(γ

−1),Ecb(γ)
)
.

Set b̃ =
∑

γ∈Γ\{id} bγγ, so b̃ = b(λ = 0). Let D̃n
β,b̃

be the subalgebra of

Dn
β,b(λ=0) generated by the elements Eab(w1),Eab(w2),Eab(γ) for a 
= b. Lemma

4.1 says that D̃n
β=0,b=0 is isomorphic to the enveloping algebra of ŝln(C[u, v] � Γ).

When β = 1, λ = 0 = bγ for γ 
= id, Dn
β=1,b=0 is exactly the enveloping algebra of

gln(A1�Γ), where A1 is the first Weyl algebra. Dn
β=0,b=0 is the enveloping algebra

of a Lie algebra that we denote šln(C[u, v] � Γ) and we have šln(C[u, v] � Γ) ⊃
ŝln(C[u, v]� Γ). See section 7 for more details.

When Γ is the trivial group, Dn
β,b is isomorphic to the algebra Dn

λ,β in [Gu2]

(see also [Gu1]). The main difference in the definitions of Dn
β,b and Dn

λ,β is that
the former does not involve any Yangian. Actually, there does not seem to be any
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sensible notion of Yangian associated to Γ in general, which, from a heuristic point
of view, is not surprising since, when Γ is not cyclic, C2 is not the direct sum of
two one-dimensional Γ-invariant subspaces. When Γ is a finite cyclic group, we can
give another definition of Dn

β,b which involves Yangians: see section 9.

By giving degree 0 to the elements of g̃ln(C[Γ]) and degree one to Eab(w), w ∈ U ,
we can define a filtration F• on Dn

β,b such that Dn
β=0,b=0 � grF (D

n
β,b). The PBW

theorem in section 8 says that this canonical map is an isomorphism.

6. Schur-Weyl functor and equivalence of categories

Given a right module M over Ht,c(Γl), we set SW(M) = M ⊗C[Sl] (C
n)⊗l. We

would like to give SW(M) a structure of a left module over Dn
β,b. The action of Eab

is simply via the sln-module structure on (Cn)⊗l. Let us assume that u, v, x, y ∈ U
are such that the map u �→ x, v �→ y is a Γ-equivariant automorphism of the
symplectic vector space U , so that ω(γ(u), v) = ω(γ(x), y). In particular, {u, v} is
a symplectic basis of C2. We would like to let Eab(w),Eab(γ) ∈ Dn

λ,β act on SW(M)
in the following way:

Eab(w)(m⊗ v) =
l∑

k=1

mwk ⊗ E
(k)
ab (v), Eab(γ)(m⊗ v) =

l∑
k=1

mγ−1
k ⊗ E

(k)
ab (v).

Here, wk = t1xk + t2yk if w = t1x+ t2y, v = vi1 ⊗ · · · ⊗ vil ∈ Cn and

E
(k)
ab (v) = vi1 ⊗ · · · ⊗ vik−1

⊗ Eab(vik)⊗ vik+1
⊗ · · · ⊗ vil .

These operators define a representation of Dn
β,b on SW(M) if and only if the follow-

ing relations hold between t, c, λ,b: λ = κ, bγ = cγ−1 for γ 
= id and β = t−nκ|Γ|
4 −κ.

To prove our claim, we have to verify that the operators above satisfy the defining
relations of Dn

β,b. We start by computing that, for a 
= b 
= c 
= a 
= d 
= c,

(
[Eab(u),Ebc(u)]− [Ead(u),Edc(u)]

)
(m⊗ v)

=

l∑
j,k=1

j �=k

m(xkxj − xjxk)⊗
(
E

(j)
ab E

(k)
bc − E

(j)
ad E

(k)
dc

)
(v)

= −κ

2

l∑
j,k=1

j �=k

∑
γ∈Γ

ωx
γmσkjγkγ

−1
j ⊗

(
E

(j)
ab E

(k)
bc − E

(j)
ad E

(k)
dc

)
(v)

= −κ

2

l∑
j,k=1

j �=k

∑
γ∈Γ

ωx
γmγjγ

−1
k ⊗

(
E

(j)
bb E(k)

ac − E
(j)
dd E

(k)
ac

)
(v)

= −κ

2

l∑
j,k=1

j �=k

∑
γ∈Γ

ωx
γmγjγ

−1
k ⊗H

(j)
bd E(k)

ac (v) = −κ

2

∑
γ∈Γ

ωx
γHbd(γ

−1)Eac(γ)(m⊗ v).
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The computations are the same when u is replaced by v and ωx
γ is replaced by

ωy
γ . Under the same assumption on a, b, c, d, we now compute:(
[Eab(v),Ebc(u)]− [Ead(u),Edc(v)]

)
(m⊗ v)

=

l∑
k=1

m(xkyk − ykxk)⊗ E(k)
ac (v) +

l∑
j,k=1

j �=k

m[xk, yj ]⊗ E
(j)
ab E

(k)
bc (v)

−
l∑

j,k=1

j �=k

m[yj , xk]⊗ E
(k)
ad E

(j)
dc (v)

=
l∑

k=1

m

⎛⎜⎝t+
κ

2

l∑
j,k=1

j �=k

∑
γ∈Γ

γjγ
−1
k σjk +

∑
γ∈Γ\{id}

cγγk

⎞⎟⎠⊗ E(k)
ac (v)

− κ

2

l∑
j,k=1

j �=k

∑
γ∈Γ

ωx,y
γ mγjγ

−1
k σjk ⊗ E

(j)
ab E

(k)
bc (v)

− κ

2

l∑
j,k=1

j �=k

∑
γ∈Γ

ωx,y
γ mγjγ

−1
k σjk ⊗ E

(k)
ad E

(j)
dc (v)

= Eac

⎛⎝t+
∑

γ∈Γ\{id}
cγγ

−1

⎞⎠ (m⊗ v) +
κ

2

∑
j �=k

∑
γ∈Γ

n∑
e=1

mγjγ
−1
k ⊗ E(j)

ae E
(k)
ec (v)

− κ

2

l∑
j,k=1

j �=k

∑
γ∈Γ

ωx,y
γ mγjγ

−1
k ⊗ E

(j)
bb E(k)

ac (v)

− κ

2

l∑
j,k=1

j �=k

∑
γ∈Γ

ωx,y
γ mγjγ

−1
k ⊗ E

(k)
dd E(j)

ac (v)

= Eac

⎛⎝t+
∑

γ∈Γ\{id}
cγγ

−1 − κn

4
|Γ|

⎞⎠ (m⊗ v)

+
κ

4

∑
γ∈Γ

n∑
e=1,e �=a,c

S
(
Eae(γ

−1),Eec(γ)
)
(m⊗ v)

+
κ

8

∑
γ∈Γ

(
S
(
Hab(γ

−1),Eac(γ)
)
+S

(
Hcd(γ),Eac(γ

−1)
)
+S

(
Had(γ),Eac(γ

−1)
)

+ S
(
Hcb(γ

−1),Eac(γ)
))

(m⊗ v)

− κ

2

∑
γ∈Γ

(ωx,y
γ − 1)

(
Ebb(γ

−1)Eac(γ) + Edd(γ)Eac(γ
−1)

)
(m⊗ v).
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We now check that
(
[Eab(γ),Ebc(u)]− [Ead(γ(u)),Edc(γ)]

)
(m⊗ v)

=
l∑

k=1

m
(
xkγ

−1
k − γ−1

k γk(xk)
)
⊗ E(k)

ac (v) +
l∑

j,k=1

j �=k

m[xk, γ
−1
j ]⊗ E

(j)
ab E

(k)
bc (v)

−
l∑

j,k=1

j �=k

m[γ−1
k , γj(xj)]⊗ E

(j)
ad E

(k)
dc (v)

= 0

since γ−1
k γk(xk) = xkγ

−1
k in Ht,c(Γl) and γjxk = xkγj , ∀γ ∈ Γ if j 
= k. Exactly

the same computations work with v instead of u and in the case a = b or c = d
with γ 
= id.

Now, we will assume instead that a 
= b 
= c 
= d 
= a:

[Eab(u),Ecd(v)](m⊗ v) =
∑
j �=k

m[yj , xk]⊗ E
(k)
ab E

(j)
cd (v)

=
κ

2

∑
γ∈Γ

∑
j �=k

ωx,y
γ mσjkγkγ

−1
j ⊗ E

(k)
ab E

(j)
cd (v)

=
κ

2

∑
γ∈Γ

∑
j �=k

ωx,y
γ mγjγ

−1
k ⊗ E

(k)
cb E

(j)
ad (v)

=
κ

2

∑
γ∈Γ

ωx,y
γ Ecb(γ)Ead(γ

−1)(m⊗ v).

The computations are the same for [Eab(u),Ecd(u)](m⊗v) and [Eab(v),Ecd(v)](m⊗v)
with ωx

γ (resp. ωy
γ) instead of ωx,y

γ .
We can state what we have proved so far in this section, but before that we need

a definition.

Definition 6.1. A module over Dn
β,b is called integrable if it is a direct sum of

integral weight spaces under the action of h and is locally nilpotent under the
action of Eab(w) for any 1 ≤ a 
= b ≤ n and any w ∈ U .

Definition 6.2. A module over Dn
β,b is said to be of level l if, as a module over

sln, it decomposes as a direct sum of irreducible sln-submodules of (Cn)⊗l.

Proposition 6.1. Suppose that λ = κ, β = t− κn|Γ|
4 − κ and bγ = cγ−1 for γ 
= id.

Then there exists a functor SW : modR − Ht,c(Γl) −→ modint,lL − Dn
β,b given by

SW(M) = M⊗C[Sl] (C
n)⊗l. Here, modint,lL is the category of integrable left modules

of level l.

This proposition can be strengthened to yield a new generalization of the classical
Schur-Weyl duality theorem between sln and Sl.

Theorem 6.1. Suppose that λ = κ, β = t− κn|Γ|
4 − κ and bγ = cγ−1 for γ 
= id. If

l + 2 < n, then the functor SW yields an equivalence between the category of right
Ht,c(Γl)-modules and the category of left modules over Dn

β,b which are integrable of
level l.

The proof of this theorem will follow the same lines as the analogous result in
[Gu1], [Gu2] (see also [ChPr1], [VaVa1]). However, before proving it, we have to
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establish a similar result for Γl and sln(C[Γ]). (When Γ is the cyclic group Z/dZ,
a more general result was established in [ATY] in the context of cyclotomic Hecke
algebras and where sln(C[Γ]) ∼= sl⊕d

n is replaced by glm1
⊕· · ·⊕glmd

.) We will need
the following lemma.

Lemma 6.1. If v = vi1 ⊗ · · · ⊗ vil is a generator of (Cn)⊗l as a module over sln

(e.g., if ij 
= ik for any j 
= k), then m⊗ v = 0 =⇒ m = 0.

Proposition 6.2. The functor SW : modR −C[Γl] −→ modlL − sln(C[Γ]) is given
by M �→ M⊗C[Sl] (C

n)⊗l, which is an equivalence of categories of finite-dimensional
modules when l + 1 < n.

Proof. Given a right Γl-module M , we can put on M ⊗C[Sl] (C
n)⊗l a structure of

a left module over sln(C[Γ]) by setting

Eab(γ)(m⊗ v) =

l∑
k=1

mγ−1
k ⊗ E

(k)
ab (v).

This extends the classical Schur-Weyl functor to modR−C[Γl] and modlL−sln(C[Γ]).
The second part of the proposition requires more work; to prove it, we will follow
the approach and ideas in [ChPr1].

Suppose that l + 1 < n. Let N be a left sln(C[Γ])-module which is of level l
as an sln-module. Then N ∼= M ⊗C[Sl] (C

n)⊗l as a left sln-module for some right
Sl-module M by the classical case. We want to show that M is a right module over
the group Γl.

For 1 ≤ k ≤ l, set v(k) = v2⊗· · ·⊗vk⊗vn⊗vk+1⊗· · ·⊗vl, where {v1, v2, . . . , vn}
is the standard basis of Cn. Let w(k) be the same element of (Cn)⊗l as v(k) except

that vn is replaced by v1. As in [ChPr1], we write w
(k)
τ for the element obtained

by permuting the factors of w(k) by τ ∈ Sl. The set {w(k)
τ |τ ∈ Sl} is a basis for the

subspace of (Cn)⊗l of weight λl = ε1 + · · ·+ εl, where εi is the weight on diagonal
matrices given by Ejj �→ δij , so we can write

E1n(γ)(m⊗ v(k)) =
∑
τ∈Sl

mτ ⊗w(k)
τ

for some mτ ∈ M . This can be rewritten as E1n(γ)(m⊗v(k)) = m′⊗w(k) for some
m′ ∈ M . By Lemma 6.1 above, m′ is unique, so there exists a linear endomorphism

ζγ,k1n of M such that m′ = ζγ,k1n (m) for all m ∈ M .
One can show, exactly as in lemma 4.5 in [ChPr1], that E1n(γ)(m ⊗ v) =∑n
k=1 ζ

γ,k
1n (m)⊗E

(k)
1n (v) for any v ∈ (Cn)⊗l. Instead of the quantized Serre relation

that they use, one should consider the relation
[
En,n−1, [En,n−1,E1n(γ)]

]
= 0, which

is a consequence of [E1n(γ),En,n−1] = [E1,n−2(γ),En−2,n−1].
Similarly, it is possible to show also that, for any 1 ≤ a 
= b ≤ n, there exists an

endomorphism ζγ,kab ∈ EndC(M) such that Eab(γ)(m⊗v) =
∑l

k=1 ζ
γ,k
ab (m)⊗E

(k)
ab (v).

We claim that, for any choice of a 
= b, c 
= d, ζγ,kab = ζγ,kcd . Suppose, for instance,
that b 
= d 
= a, Then Ead(γ) = [Eab(γ),Ebd], so

Ead(γ)(m⊗ v) = [Eab(γ),Ebd](m⊗ v) =
l∑

k=1

ζγ,kab (m)⊗ E
(k)
ad (v).
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Since this is true for any v ∈ (Cn)l,m ∈ M , ζγ,kab = ζγ,kad . The other cases can

be treated similarly. Therefore, we can define ζγ,k ∈ EndC(M) unambiguously by

setting ζγ,k = ζγ,kab for any choice of a 
= b.

We can now show that setting mγk = ζγ
−1,k(m) gives M a structure of a right

module over Γl. We will prove the following relations:

1. (mγk)γ̃k = m(γγ̃)k, ∀ γ, γ̃ ∈ Γ.
2. (mγk)γ̃j = (mγ̃j)γk ∀γ, γ̃ ∈ Γ if j 
= k.
3. (mσjk)γj = (mγk)σjk, ∀ 1 ≤ j 
= k ≤ l, ∀γ ∈ Γ.

(1): Set v = v2 ⊗ · · · ⊗ vk ⊗ vn ⊗ vk+1 ⊗ · · · ⊗ vl and ṽ = v2 ⊗ · · · ⊗ vk ⊗ v1 ⊗
vk+1 ⊗ · · · ⊗ vl. Since [E1,n−1(γ̃

−1),En−1,n(γ
−1)] = E1n(γ̃

−1γ−1), we obtain

[E1,n−1(γ̃
−1),En−1,n(γ

−1)](m⊗ v) =
(
(mγk)γ̃k

)
⊗ ṽ = E1n(γ̃

−1γ−1)(m⊗ v).

This equality, along with Lemma 6.1, imply that (mγk)γ̃k = m(γγ̃)k, which is what
we wanted.

(2): Suppose that 1 ≤ j < k ≤ l. Set v = v3⊗· · ·⊗ vj+1⊗ vn⊗ vj+2⊗· · ·⊗ vk ⊗
vn−1⊗vk+1⊗· · ·⊗vl and ṽ = v3⊗· · ·⊗vj+1⊗v1⊗vj+2⊗· · ·⊗vk⊗v2⊗vk+1⊗· · ·⊗vl.
Since [E1n(γ̃

−1),E2,n−1(γ
−1)] = 0, we get

0 = [E1n(γ̃
−1),E2,n−1(γ

−1)](m⊗ v) =
(
(mγk)γ̃j

)
⊗ ṽ −

(
(mγ̃j)γk

)
⊗ ṽ,

so, by Lemma 6.1, (mγk)γ̃j = (mγ̃j)γk.
(3): Set v = v2 ⊗ · · · ⊗ vj ⊗ vn ⊗ vj+1 ⊗ · · · ⊗ vk−1 ⊗ vn−1 ⊗ vk+1 ⊗ · · · ⊗ vl

and ṽ = σjk(v); let v̂ be the same as v except that vn is replaced by v1 and set
v = σjk(v̂). Then

(mσjk)γj⊗v = En1(γ
−1)(mσjk⊗v̂) = En1(γ

−1)(m⊗v) = mγk⊗ṽ = (mγk)σjk⊗v.

Again, Lemma 6.1 allows us to conclude that (mσjk)γj = (mγk)σjk.
Finally, one can check that the functor F is bijective on sets of morphisms. �

Proof of Theorem 6.1. Let N be a left module over Dn
β,b which is integrable and of

level l. Proposition 6.2 says that N = M ⊗C[Sl] (C
n)⊗l for some right Γl-module

M . We have to extend this to a right module structure over Ht,c(Γl).
We can proceed exactly as in the proof of Proposition 6.2 (mimicking the argu-

ments in [ChPr1]) to show that there exist endomorphisms ζwk ∈ EndC(M) such

that Eab(w)(m⊗v) =
∑l

k=1 ζ
w
k (m)⊗E

(k)
ab (v). We proceed as in [Gu2] to show that

setting mxk = ζuk (m),myj = ζvj (m) turns M into a module over Ht,c(Γl).
Fix 1 ≤ j, k ≤ l, j 
= k. Choose v = vi1 ⊗ · · · ⊗ vil such that ik = 2, ij = n − 1,

ir = r+ 2 if r < j, r 
= k, ir = r+1 if r > j, r 
= k. Set ṽ = E
(k)
n2 E

(j)
1,n−1(v). On the

one hand,(
E1,n−1(w2)En2(w1)− En2(w1)E1,n−1(w2)

)
(m⊗ v)

=
l∑

s=1

l∑
r=1

mw1
rw

2
s ⊗ E

(s)
1,n−1E

(r)
n2 (v)−

l∑
s=1

l∑
r=1

mw2
sw

1
r ⊗ E

(r)
n2 E

(s)
1,n−1(v)

= m
(
w1

kw
2
j − w2

jw
1
k

)
⊗ ṽ.

Using relation (36) for Eab = En2 and Ecd = E1,n−1, we find that

[E1,n−1(w2),En2(w1)] = −λ

2

∑
γ∈Γ

ω(γ(w1), w2)En,n−1(γ
−1)E12(γ),
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so

[E1,n−1(w2),En2(w1)](m⊗ v) = −λ

2

∑
γ∈Γ

ω(γ(w1), w2)mγ−1
k γj ⊗ E

(j)
n,n−1E

(k)
12 (v)

= −λ

2

∑
γ∈Γ

ω(γ(w2), w1)mγjγ
−1
k σjk ⊗ ṽ.

Therefore, m
(
w1

kw
2
j − w2

jw
1
k +

λ
2

∑
γ∈Γ ω(γ(w1), w2)σjkγkγ

−1
j

)
⊗ ṽ = 0. From

Lemma 6.1 and our assumption that λ = κ, we deduce that m
(
w1

kw
2
j − w2

jw
1
k+

κ
2

∑
γ∈Γ ω(γ(x), y))σjkγkγ

−1
j

)
= 0.

We use equation (35) in the case (a, b) = (n, 1), (c, d) = (n − 1, 1). It implies
that the difference [En1(v),E1,n−1(u)]− [En1(u),E1,n−1(v)] is equal to

En,n−1(b+ β)+
λ

4

∑
γ∈Γ

n−2∑
j=1

S(Enj(γ),Ej,n−1(γ
−1))

+
λ

4

∑
γ∈Γ

(
S
(
Hn1(γ),En,n−1(γ

−1)
)
+ S

(
En,n−1(γ),Hn−1,1(γ

−1)
))

− λ

2

∑
γ∈Γ

(ω(γ(u), v)− 1)
(
E11(γ

−1)En,n−1(γ) + E11(γ)En,n−1(γ
−1)

)
.

Now fix k and let v be determined by ik = n − 1, ij = j + 1 if j 
= k. Set

v̂ = E
(k)
n,n−1(v). Applying both sides of the previous equality to m⊗ v, we deduce

that

m(xkyk − ykxk)⊗ v̂ = m

⎛⎜⎝β + λ+
∑
γ∈Γ

γ �=id

bγγ
−1

⎞⎟⎠⊗ v̂ +
λn|Γ|
4

m⊗ v̂

+
λ

2

∑
γ∈Γ

n∑
j,k=1

j �=k

mσjkγkγ
−1
j ⊗ v̂.

Lemma 6.1 and our assumption that λ = κ, β = t− κn|Γ|
4 − κ, bγ = cγ−1 imply that

[xk, yk] = t+ κ
2

∑
γ∈Γ

∑n
j,k=1

j �=k
σjkγkγ

−1
j +

∑
γ∈Γ

γ �=id
cγγ.

That the functor SW is bijective on sets of morphisms follows from the classical
Schur-Weyl duality and Lemma 6.1. �

7. Specialization at λ = 0

In [Gu2], we proved that, when the parameters λ = 0 and β 
= 0, the deformed
double current algebra is isomorphic to the enveloping algebra of the Lie algebra
gln over the first Weyl algebra, which is a symplectic reflection algebra of rank one
for the trivial group Γ = {1}. Therefore, it is natural to conjecture that, for an
arbitrary finite subgroup Γ of SL2(C), a similar result is true, the first Weyl algebra
being replaced by a symplectic reflection algebra of rank one for Γ. Theorem 7.1
confirms this.
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Definition 7.1 ([CBHo]). Set c̃ =
∑

γ∈Γ\{id} cγγ. Let At,c̃ be the algebra gen-

erated by the elements x, y, γ ∈ Γ and satisfying the relations γ · x · γ−1 = γ(x),
γ · y · γ−1 = γ(y) and xy− yx = t+ c̃. (Here, spanC{x, y} ∼= C2 and Γ thus acts on
spanC{x, y}.)

We recall that the Lie algebra sln(At,c̃) is defined as the Lie subalgebra of
gln(At,c̃) of matrices with trace in [At,c̃,At,c̃]. As a vector space, sln(At,c̃) =

sln ⊗C At,c̃ ⊕ d
(
[At,c̃,At,c̃]

)
, where d

(
[At,c̃,At,c̃]

)
is the space of scalar matrices

in gln(At,c̃) with entries in [At,c̃,At,c̃].

Lemma 7.1. For all c̃ and all t ∈ C× except a countable set, the Lie algebra
sln(At,c̃) is universally closed; that is, it is its own universal central extension.

Proof. Theorem 1.7 in [KaLo] states that the center of the universal central exten-
sion of sln(A), where A is an arbitrary associative algebra, is isomorphic to the
first cyclic homology group HC1(A). It is shown in [EtGi] that the first Hochschild
homology group HH1(At,c̃) vanishes for all c̃ and all t ∈ C× outside a countable
set. The group HC1(At,c̃) is a quotient of HH1(At,c̃), so it vanishes also. �

Theorem 7.1. Suppose that β = t and bγ = cγ−1 for γ 
= id. Then the algebra D̃n
β,b̃

is isomorphic to the enveloping algebra of the Lie algebra ŝln(At,c̃), the universal
central extension of sln(At,c̃).

Proof. It follows from the definition of D̃n
β,b̃

and Theorem 4.1 that Uŝln(At,c̃) is a

quotient of D̃n
β,b. To prove that the quotient map is an isomorphism, we construct

elements Eab(p) ∈ D̃n
β,b̃

for 1 ≤ a 
= b ≤ n and any p ∈ At,c̃ and show that

they satisfy the relations in Theorem 4.1. We will give a proof when n ≥ 5; it
illustrates how the calculations are sometimes simpler when n ≥ 5. Let g be the
Lie algebra defined by the relations in Definition 5.1 with λ = 0. Lemma 3.4 gives us
homomorphisms sln[v] −→ g, sln[u] −→ g. Define Eab(v

jγ) = [Eac(v
j),Ecb(γ)] for

γ 
= id, a, b, c all distinct, and set inductively Eab(u
ivjγ) = [Eac(u),Ecb(u

i−1vjγ)]
for some c 
= a, b and for i, j ≥ 1. We define Eab(p) by linearity when p is a sum of
monomials. We have to show that [Eab(p1),Ebc(p2)] = Eac(p1p2) if a 
= b 
= c 
= a
and [Eab(p1),Ecd(p2)] = 0 if a 
= b 
= c 
= d 
= a for any p1 = ui1vj1γ1, p2 = ui2vj2γ2.

The first step, however, is to show that the definition of Eab(u
ivjγ) does not

depend on the choice of c. Since we are assuming that n ≥ 5, choose d, e such that
a, b, c, d, e are all distinct and assume that i ≥ 2. (The case i = 1, j ≥ 1 is similar.)
Then

[Eac(u),Ecb(u
i−1vjγ)] =

[
Eac(u),

[
Ecd, [Ede(u),Eeb(u

i−2vjγ)]
]]

=
[
[Eac(u),Ecd], [Ede(u),Eeb(u

i−2vjγ)]
]

= [Ead(u),Edb(u
i−2vjγ)].

The arguments used are similar to those in the proofs of Lemmas 3.4, 3.5 and
4.1. We proceed again by induction on deg(p1)+deg(p2) to prove the two equalities
above, which hold when deg(p1) + deg(p2) ≤ 1.

If a 
= b 
= c 
= d 
= a, choose e 
= a, b, c, d. Without loss of generality, we can sup-
pose that p1 = up̃1 and deg(p1) ≥ 2. Then [Eab(p1),Ecd(p2)] =

[
[Eae(u),Eeb(p̃1)],

Ecd(p2)
]
= 0 by induction.
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If p1 = up̃1 with deg(p̃1) ≥ 1, choose a, b, c, d all distinct, so that, by induction,

[Eab(p1),Ebc(p2)] =
[
[Ead(u),Edb(p̃1)],Ebc(p2)

]
=

[
Ead(u), [Edb(p̃1)],Ebc(p2)]

]
= [Ead(u),Edc(p̃1p2)] = Eac(up̃1p2) = Eac(p1p2).

If p1 = vr with r ≥ 1 and p2 = up̃2, then choose a, b, c, d, e all distinct, so that

[Eab(p1),Ebc(p2)]

=
[
[Ead(v),Edb(v

r−1],Ebc(p2)
]
=

[
Ead(v), [Edb(v

r−1),Ebc(p2)]
]

= [Ead(v),Edc(v
r−1p2)] = [Ead(v),Edc(uv

r−1p̃2) + Edc([v
r−1, u]p̃2)]

=
[
Ead(v), [Ede(u),Eec(v

r−1p̃2)]
]
+ [Ead(v),Edc([v

r−1, u]p̃2)]

=
[
[Ead(v),Ede(u)],Eec(v

r−1p̃2)
]
+ Eac(v[v

r−1, u]p̃2)

=
[
[Ead(u),Ede(v)],Eec(v

r−1p̃2)
]
− [Eae(c̃),Eec(v

r−1p̃2)
]
+ Eac(v[v

r−1, u]p̃2)

= Eac(uv
rp̃2)− Eac(c̃v

r−1p̃2) + Eac(v[v
r−1, u]p̃2)

= Eac(p1p2).

If p1 = p̃1γ with p̃1 a monomial in u, v, p2 = up̃2 and a, b, c, d, e are all distinct,
then

[Eab(p1),Ebc(p2)] =
[
[Eae(p̃1),Eeb(γ)], [Ebd(u),Edc(p̃2)]

]
=

[
Eae(p̃1),

[
[Eeb(γ),Ebd(u)],Edc(p̃2)

]]
=

[
Eae(p̃1),

[
[Eeb(γ(u)),Ebd(γ)],Edc(p̃2)

]]
= [Eae(p̃1),Eec(γ(up̃2)γ)]

= [Eae(p̃1),Eec(γ(p2)γ)] = Eac(p1p2).

The last line follows from the previous cases since p̃1 is assumed to be a monomial
in u, v. �

Corollary 7.1. For all b(λ = 0) and all β ∈ C× outside a countable set, the algebra
Dn

β,b(λ=0) is isomorphic to the enveloping algebra of the Lie algebra gln(At,c̃) with

t = β, cγ = bγ−1 for γ 
= id. This is true, in particular, when λ = 0 = bγ for γ 
= id
and β 
= 0.

Proof. Lemma 7.1 and Theorem 7.1 imply that D̃n
β,b̃

is isomorphic to sln(At,c̃)

with t = β, cγ = bγ−1 for γ 
= id. The isomorphism given in Theorem 7.1 can be
extended to Dn

β,b(λ=0) and gln(At,c̃) by sending Eaa(γ) to Eaa ⊗ γ for γ 
= id. Note

that
gln(At,c̃)

sln(At,c̃)
∼= At,c̃

[At,c̃,At,c̃]
= HC0(At,c̃), and it is proved in [EtGi] that dimC(At,c̃) =

cl(Γ)− 1 for generic values of the parameters (in the same sense as above). �

8. PBW bases

We follow the same approach as in [Gu2] to prove that a Γ-deformed double
current algebra admits a vector space basis of PBW type. This can be formulated by
saying that the map Dn

β=0,b=0 � grF (D
n
β,b) is an isomorphism. We will construct

inductively a vector space basis of Dn
β,b which yields the natural PBW basis on

grF (D
n
β,b)

∼= Ušln(C[u, v] � Γ). We make the same assumption on u, v, x, y as in

section 6. We need to assume that β + λ− λn|Γ|
4 
= 0 in this section.
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We need to choose in C[u, v] a Γ-invariant space E complementary to C[u, v]Γ, so
that C[u, v] ∼= C[u, v]Γ⊕E as Γ-modules. We can suppose that E =

⊕
m≥1E[m] is

graded by the degree of the monomials and E(1) = U . Let us assume that we have
constructed elements Fab(p) ∈ Dn

β,b for all p ∈ E ⊕ span{p̃γ|p̃ ∈ C[u, v], γ 
= id}
of degree ≤ N ∀ 1 ≤ a, b ≤ n and also ∀ p ∈ C[u, v]Γ + C[Γ] of degree ≤ N − 2

∀ 1 ≤ a, b ≤ n, such that Fab(p)(h ⊗ v) =
∑l

k=1 hp(xk, yk, γk) ⊗ E
(k)
ab (v) if h ∈

Ht,c(Γl),v ∈ (Cn)⊗l. This is already known to hold for N = 1. We use the notation
Fab(p) instead of Eab(p) because we must set Fab(γ) = Eab(γ

−1),Fab(t1u + t2v) =
Eab(t1u + t2v), t1, t2 ∈ C and Fab(wγ) = [Eac(γ

−1),Ecb(w)] for some c 
= a, b. We
want to construct by induction such elements Fab(p) for any p ∈ C[u, v] � Γ, 1 ≤
a, b ≤ n. Set Hab(p) = [Fab(p),Fba] for 1 ≤ a 
= b ≤ n if Fab(p) has already been
defined.

Let p(u, v) ∈ C[u, v]Γ, p(u, v) 
= 0 be a polynomial of degree N−1 (we can assume

that p(u, v) is homogeneous). In the computations below for P̂ (h⊗ v), we will not
need to use that p(u, v) is Γ-invariant. However, we have to start with this case in
the induction step.

Suppose that p(u, v) =
∑

r,s≥0(c
p
r,sru

svr−1 − c̃pr,ssu
s−1vr), where cpr,s, c̃

p
r,s ∈ C

and cpr,s = 0 = c̃(p, r, s) if r+ s 
= f . The proof of Proposition 4.2 suggests that we
consider the following elements:

P̂i =
∑
r,s≥0

(
cpr,s[Hi(u

svr),Hi(u)] + c̃pr,s[Hi(u
svr),Hi(v)]

)
and P̂ =

1

2

n∑
i=1

P̂i.

P̂ (h⊗ v) =
1

2

n∑
i=1

∑
r,s≥0

l∑
k=1

(
cpr,sh[xk, x

s
ky

r
k]− c̃pr,sh[x

s
ky

r
k, yk]

)
⊗ (Eii + Ei+1,i+1)

(k)v

+
1

2

n∑
i=1

∑
r,s≥0

l∑
j,k=1

j �=k

(
cpr,sh[xk, x

s
jy

r
j ]− c̃pr,sh[x

s
jy

r
j , yk]

)
⊗H

(j)
i H

(k)
i v

=
∑
r,s≥0

l∑
k=1

(
cpr,s

r−1∑
d=0

hxs
ky

d
k[xk, yk]y

r−d−1
k −c̃pr,s

s−1∑
d=0

hxd
k[xk, yk]x

s−d−1
k yrk

)
⊗v

+

n∑
i=1

∑
r,s≥0

s−1∑
d=0

l∑
j,k=1

j �=k

(
cpr,s
2

hxd
j [xk, xj ]x

s−d−1
j yrj −

c̃pr,s
2

hxd
j [xj , yk]x

s−d−1
j yrj

)

⊗H
(k)
i H

(j)
i v

+
n∑

i=1

∑
r,s≥0

l∑
j,k=1

j �=k

r−1∑
d=0

(
cpr,s
2

hxs
jy

d
j [xk, yj ]y

r−d−1
j −

c̃pr,s
2

hxs
jy

d
j [yj , yk]y

r−d−1
j

)

⊗H
(k)
i H

(j)
i v

= t
∑
r,s≥0

l∑
k=1

(
cpr,srhx

s
ky

r−1
k − c̃pr,sshx

s−1
k yrk

)
⊗ v
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+
∑
r,s≥0

cpr,s

r−1∑
d=0

⎛⎜⎝κ

2

l∑
j,k=1

j �=k

∑
γ∈Γ

hxs
ky

d
kσjkγkγ

−1
j yr−d−1

k

+
∑

γ∈Γ\{id}
cγhx

s
ky

d
kγky

r−d−1
k

⎞⎠⊗ v

−
∑
r,s≥0

c̃pr,s

s−1∑
d=0

⎛⎜⎝κ

2

l∑
j,k=1

j �=k

∑
γ∈Γ

hxd
kσjkγkγ

−1
j xs−d−1

k yrk

+
∑

γ∈Γ\{id}
cγhx

d
kγkx

s−d−1
k yrk

⎞⎠⊗ v

− κ

4

n∑
i=1

∑
r,s≥0

∑
j �=k

s−1∑
d=0

∑
γ∈Γ

h(ωx
γc

p
r,sx

d
jσjkγkγ

−1
j xs−d−1

j yrj

− c̃pr,sω
x,y
γ xd

jσjkγjγ
−1
k xs−d−1

j yrj )⊗H
(k)
i H

(j)
i (v)

− κ

4

n∑
i=1

∑
r,s≥0

∑
j �=k

r−1∑
d=0

∑
γ∈Γ

h(ωx,y
γ cpr,sx

s
jy

d
j σjkγkγ

−1
j yr−d−1

j

− ωy
γ c̃

p
r,sx

s
jy

d
j σkjγjγ

−1
k yr−d−1

j )⊗H
(k)
i H

(j)
i (v)

= t
l∑

k=1

hp(xk, yk)⊗ v

+
∑
r,s≥0

∑
γ∈Γ\{id}

cγ

(
cpr,s

r−1∑
d=0

hxs
ky

d
kγ(y

r−d−1
k )γk

−c̃pr,s

s−1∑
d=0

hxd
kγ(x

s−d−1
k yrk)γk

)
⊗ v

+
κ

2

∑
r,s≥0

l∑
j,k=1

j �=k

∑
γ∈Γ

n∑
e,i=1

(
cpr,s

r−1∑
d=0

hxs
ky

d
kγ(y

r−d−1
j )γjγ

−1
k

− c̃pr,s

s−1∑
d=0

hxd
kγ(x

s−d−1
j yrj )γjγ

−1
k

)
⊗ E

(k)
ei E

(j)
ie (v)

− κ

2

∑
r,s≥0

l∑
j,k=1

j �=k

s−1∑
d=0

∑
γ∈Γ

n∑
i=1

(cpr,sω
x
γ − c̃pr,sω

x,y
γ−1)hx

d
jγ

−1(xs−d−1
k yrk)γjγ

−1
k

⊗
(
E

(j)
ii E

(k)
ii − 1

2
E

(j)
i,i+1E

(k)
i+1,i −

1

2
E

(j)
i+1,iE

(k)
i,i+1

)
(v)

− κ

2

∑
r,s≥0

∑
j,k=1

j �=k

r−1∑
d=0

∑
γ∈Γ

n∑
i=1

(cpr,sω
x,y
γ − c̃pr,sω

y
γ−1)hx

s
jy

d
j γ

−1(yr−d−1
k )γjγ

−1
k
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⊗
(
E

(j)
ii E

(k)
ii − 1

2
E

(j)
i,i+1E

(k)
i+1,i −

1

2
E

(j)
i+1,iE

(k)
i,i+1

)
(v)

= t

l∑
k=1

hp(xk, yk)⊗ v − κn

2

∑
r,s≥0

r−1∑
d=0

∑
γ∈Γ

l∑
k=1

cpr,shx
s
ky

r−1
k ⊗ v

+
κ

2

∑
r,s≥0

r−1∑
d=0

∑
γ∈Γ

n∑
e,i=1

e�=i

cpr,sFie(γ(v
r−d−1)γ)Fei(u

svdγ−1)(h⊗ v)(37)

+
∑
r,s≥0

r−1∑
d=0

∑
γ∈Γ\{id}

n∑
i=1

cγ
(
cpr,sFii(u

svdγ(vr−d−1)γ)

+ c̃pr,sFii(u
dγ(us−d−1vr)γ)

)
(h⊗ v)(38)

+
κ

2

∑
r,s≥0

r−1∑
d=0

∑
γ∈Γ\{id}

n∑
i=1

cpr,s(1−ωx,y
γ−1)Fii(γ(v

r−d−1)γ),Fii(u
svdγ−1))(h⊗v)(39)

− κ

2

∑
r,s≥0

s−1∑
d=0

∑
γ∈Γ

n∑
e,i=1

e�=i

c̃pr,sFie(γ(u
s−d−1vr)γ)Fei(u

dγ−1)(h⊗ v)(40)

+
κn

2

∑
r,s≥0

s−1∑
d=0

∑
γ∈Γ

n∑
k=1

c̃pr,shx
s−1
k yrk ⊗ v

− κ

2

∑
r,s≥0

s−1∑
d=0

∑
γ∈Γ\{id}

n∑
i=1

c̃pr,s(1−ωx,y
γ )Fii(γ(u

s−d−1vr)γ)Fii(u
dγ−1)(h⊗v)(41)

− κ

2

∑
r,s≥0

s−1∑
d=0

∑
γ∈Γ\{id}

n∑
i=1

cpr,sω
x
γ−1Fii(γ(u

s−d−1vr)γ)Fii(u
dγ−1)(h⊗ v)(42)

+
κ

4

∑
r,s≥0

s−1∑
d=0

∑
γ∈Γ

n∑
i=1

(cpr,sω
x
γ−1−c̃pr,sω

x,y
γ )

(
Fi+1,i(γ(u

s−d−1vr)γ)Fi,i+1(u
dγ−1)

+ Fi,i+1(γ(u
s−d−1vr)γ)Fi+1,i(u

dγ−1)
)
(h⊗ v)(43)

+
κ

2

∑
r,s≥0

r−1∑
d=0

∑
γ∈Γ\{id}

n∑
i=1

c̃pr,sω
y
γFii(γ(v

r−d−1)γ)Fii(u
svdγ−1)(h⊗ v)(44)

+
κ

4

∑
r,s≥0

r−1∑
d=0

∑
γ∈Γ

n∑
i=1

(cpr,sω
x,y
γ−1−c̃pr,sω

y
γ)
(
Fi+1,i(γ(v

r−d−1)γ)Fi,i+1(u
svdγ−1)

+ Fi,i+1(γ(v
r−d−1)γ)Fi+1,i(u

svdγ−1)
)
(h⊗ v).(45)

Set Ĩ(p) = P̂ − (37)
′ − (38)

′ − · · · − (45)
′
, where (37) is the expression on line

(37) but without h ⊗ v, and I(p) =
(
β + λ− nλ|Γ|

4

)−1

Ĩ(p). Then I(p)(h ⊗ v) =∑l
k=1 hp(xk, yk)⊗ v.
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Finally, set F11(p) = 1
n I(p) +

∑n−1
i=1 (1 − i

n )Hi,i+1(p), so F11(p)(h ⊗ v) =∑l
k=1 hp(xk, yk) ⊗ E

(k)
11 (v). We can then obtain Fii(p) with the same property.

We let Fab(p) = [Faa(p),Fab] if 1 ≤ a 
= b ≤ n.
We must now construct elements Fab(p) ∀ p ∈ E ⊕ span{p̃γ|p̃ ∈ C[u, v], γ 
= id}

of degree N + 1 and ∀ : 1 ≤ a, b ≤ n. Suppose first that 1 ≤ a 
= b ≤ n and put
p = usvrγ with r+s = N+1 and, without loss of generality, r ≥ 1. Choose c 
= a, b

and set F̃ab(u
svr) = [Fac(v),Fcb(u

svr−1)]. We compute that F̃ab(u
svr)(h⊗v) equals

l∑
k=1

hxs
ky

r
k ⊗ E

(k)
ab (v) +

l∑
j,k=1
j �=k

h[xs
ky

r−1
k , yj ]⊗ E(j)

ac E
(k)
cb (v)

=

l∑
k=1

hxs
ky

r
k ⊗ E

(k)
ab (v) +

l∑
j,k=1
j �=k

s−1∑
d=0

hxd
k[xk, yj ]x

s−1−d
k yr−1

k ⊗E(j)
ac E

(k)
cb (v)

+

l∑
j,k=1
j �=k

r−2∑
d=0

hxs
ky

d
k[yk, yj ]y

r−2−d
k ⊗E(j)

ac E
(k)
cb (v)

=

l∑
k=1

hxs
ky

r
k⊗E

(k)
ab (v)− κ

2

l∑
j,k=1
j �=k

s−1∑
d=0

∑
γ∈Γ

ωx,y
γ hxd

kσjkγkγ
−1
j xs−1−d

k yr−1
k ⊗E(j)

ac E
(k)
cb (v)

− κ

2

l∑
j,k=1
j �=k

r−2∑
d=0

∑
γ∈Γ

ωy
γhx

s
ky

d
kσjkγkγ

−1
j yr−2−d

k ⊗ E(j)
ac E

(k)
cb (v)

=
l∑

k=1

hxs
ky

r
k ⊗ E

(k)
ab (v)− κ

2

l∑
j,k=1
j �=k

s−1∑
d=0

∑
γ∈Γ

ωx,y
γ hxd

kγ(x)
s−1−d
j γ(y)r−1

j γjγ
−1
k

⊗E(j)
cc E

(k)
ab (v)− κ

2

l∑
j,k=1
j �=k

r−2∑
d=0

∑
γ∈Γ

ωy
γhx

s
ky

d
kγ(y)

r−2−d
j γjγ

−1
k ⊗ E(j)

cc E
(k)
ab (v)

=

l∑
k=1

hxs
ky

r
k ⊗ E

(k)
ab (v)

− κ

2

∑
γ∈Γ

(
s−1∑
d=0

ωx,y
γ Fcc(γ(u)

s−1−dγ(v)r−1γ)Fab(u
dγ−1)(46)

+

r−2∑
d=0

ωy
γFab(u

svdγ−1),Fcc(γ(v)
r−2−dγ)

)
(h⊗ v).(47)

Setting Fab(u
svr) = F̃ab(u

svr) − (46)
′ − (47)

′
, where (46)

′
is the expression on

line (46) but without (h⊗v), we have obtained an element with the required prop-
erty. For γ 
= id, we can set Fab(u

svrγ) = [Eaa(γ
−1),Fab(u

svr)] and Hab(u
svrγ) =

[Fab(u
svrγ),Eba]. If p = p̃γ, γ 
= id, then p̃ is a sum of monomials usvr of degree

N + 1, so we can also define Fab(p) and Hab(p).
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Suppose that γ ∈ Γ \ {id} and let u(γ), v(γ) be a basis of U ∼= C2 consisting
of eigenvectors of γ (necessarily for nontrivial eigenvalues µ(γ), ν(γ), respectively).

The vectors x(γ), y(γ) are defined similarly. For s ≥ 1, we set D̃(u(γ)sv(γ)rγ) =
1

2(1−µ(γ))

∑n
i=1[Hi(u(γ)

s−1v(γ)rγ),Hi(u(γ))], whereas if s = 0 and r ≥ 1, we set

D̃(v(γ)rγ) = 1
1−2(ν(γ))

∑n
i=1[Hi(v(γ)

r−1γ),Hi(v(γ))]. Let us assume that s ≥ 1;

then D̃(u(γ)sv(γ)rγ)(h⊗ v) equals

1

(1− µ(γ))

(
l∑

k=1

h[x(γ)k, x(γ)
s
ky(γ)

r
kγk]⊗ v

+
1

2

n∑
i=1

l∑
j,k=1
j �=k

h[x(γ)k, x(γ)
s
jy(γ)

r
jγj ]⊗H

(k)
i H

(j)
i (v)

⎞⎟⎟⎠
=

l∑
k=1

hx(γ)s+1
k y(γ)rkγk ⊗ v

+
µ(γ)

(1− µ(γ))

n∑
k=1

r−1∑
d=0

hx(γ)sky(γ)
d
k[x(γ)k, y(γ)k]y(γ)

r−1−d
k γk ⊗ v

+
1

2(1− µ(γ))

n∑
i=1

l∑
j,k=1
j �=k

s−1∑
d=0

hx(γ)dj [x(γ)k, x(γ)j ]x(γ)
s−1−d
j y(γ)rjγj ⊗H

(k)
i H

(j)
i (v)

+
1

2(1− µ(γ))

n∑
i=1

l∑
j,k=1
j �=k

r−1∑
d=0

hx(γ)sjy(γ)
d
j [x(γ)k, y(γ)j ]y(γ)

r−1−d
j γj ⊗H

(k)
i H

(j)
i (v)

=

l∑
k=1

hx(γ)s+1
k y(γ)rkγk ⊗ v

+
µ(γ)

(1− µ(γ))

n∑
k=1

r−1∑
d=0

hx(γ)sky(γ)
d
k

⎛⎜⎜⎝t+
κ

2

l∑
j=1
j �=k

∑
γ̃∈Γ

σjkγ̃kγ̃
−1
j

+
∑

γ̃∈Γ\{id}
cγ̃ γ̃k

⎞⎠ y(γ)r−1−d
k γk ⊗ v

− κ

4(1−µ(γ))

n∑
i=1

l∑
j,k=1
j �=k

s−1∑
d=0

∑
γ̃∈Γ

ω
x(γ)
γ̃ hx(γ)djσjkγ̃kγ̃

−1
j x(γ)s−1−d

j y(γ)rjγj ⊗H
(k)
i H

(j)
i (v)

− κ

4(1− µ(γ))

n∑
i=1

l∑
j,k=1
j �=k

r−1∑
d=0

∑
γ̃∈Γ

ω
x(γ),y(γ)
γ̃ hx(γ)sjy(γ)

d
jσjkγ̃kγ̃

−1
j y(γ)r−1−d

j γj

⊗H
(k)
i H

(j)
i (v)

=
l∑

k=1

hx(γ)s+1
k y(γ)rkγk ⊗ v +

trµ(γ)

(1− µ(γ))

n∑
k=1

hx(γ)sky(γ)
r−1
k γk ⊗ v

+
κµ(γ)

2(1− µ(γ))

l∑
j,k=1
j �=k

r−1∑
d=0

∑
γ̃∈Γ

hx(γ)sky(γ)
d
kγ̃(y(γ))

r−1−d
j γ̃−1

k γ̃jγjσjk ⊗ v

+
µ(γ)

(1− µ(γ))

l∑
k=1

r−1∑
d=0

∑
γ̃∈Γ\{id}

cγ̃hx(γ)
s
ky(γ)

d
kγ̃(y(γ))

r−1−d
k γ̃kγk ⊗ v
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− κ

4(1− µ(γ))

n∑
i=1

∑
j �=k

∑
γ̃∈Γ

h

(
s−1∑
d=0

ω
x(γ)
γ̃ x(γ)dj γ̃

−1(x(γ))s−1−d
k γ̃−1(y(γ))rkγ̃j γ̃

−1
k γk

+

r−1∑
d=0

ω
x(γ),y(γ)
γ̃ x(γ)sjy(γ)

d
j γ̃

−1(y(γ))r−1−d
k γ̃j γ̃

−1
k γk

)
⊗

(
2E

(k)
ii E

(j)
ii − E

(k)
i,i+1E

(j)
i+1,i − E

(k)
i+1,iE

(j)
i,i+1

)
(v)

=
l∑

k=1

hx(γ)s+1
k y(γ)rkγk ⊗ v

+
trµ(γ)

(1− µ(γ))
I(u(γ)sv(γ)r−1γ)(h⊗ v)−

∑
γ̃∈Γ

n∑
a=1

rFaa(u(γ)
sv(γ)r−1γ)(h⊗ v)(48)

+
κµ(γ)

2(1− µ(γ))

r−1∑
d=0

∑
γ̃∈Γ

n∑
a,b=1

Fab(γ̃(v(γ))
r−1−dγ̃γ)Fba(u(γ)

sv(γ)dγ̃−1)(h⊗ v)(49)

+
µ(γ)

(1− µ(γ))

r−1∑
d=0

∑
γ̃∈Γ\{id}

cγ̃ I
(
u(γ)sv(γ)dγ̃(v(γ))r−1−dγ̃γ

)
(h⊗ v)(50)

− κ

4(1− µ(γ))

n∑
i=1

s−1∑
d=0

∑
γ̃∈Γ

ω
x(γ)
γ̃

(
2Fii(γ̃

−1(u(γ))s−1−dγ̃−1(v(γ))rγ̃−1γ)Fii(u(γ)
dγ̃)(51)

− Fi+1,i(γ̃
−1(u(γ))s−1−dγ̃−1(v(γ))rγ̃−1γ)Fi,i+1(u(γ)

dγ̃)(52)

− Fi,i+1(γ̃
−1(u(γ))s−1−dγ̃−1(v(γ))rγ̃−1γ)Fi+1,i(u(γ)

dγ̃)
)
(h⊗ v)(53)

− κ

4(1− µ(γ))

n∑
i=1

r−1∑
d=0

∑
γ̃∈Γ

ω
x(γ),y(γ)
γ̃

(
Fii(γ̃

−1(v(γ))r−1−dγ̃−1γ)Fii

(
u(γ)sv(γ)dγ̃)(54)

− Fi+1,i(γ̃(v(γ))
r−1−dγ̃−1γ)Fi,i+1

(
u(γ)sv(γ)dγ)(55)

− Fi,i+1(γ̃(v(γ))
r−1−dγ̃−1γ)Fi+1,i

(
u(γ)sv(γ)dγ)

)
(h⊗ v).(56)

Set D(u(γ)sv(γ)rγ) = D̃(u(γ)sv(γ)rγ) − (48)′ − · · · − (56)′ where (48)′ denotes
the expression on line (48) but without (h⊗ v). We define Fii(u(γ)

sv(γ)rγ) in the

following way: Fnn(u(γ)
sv(γ)rγ) = 1

n

(
D(u(γ)sv(γ)rγ)−

∑n−1
i=1 iHi(u(γ)

sv(γ)rγ)
)

and, recursively, Fii(u(γ)
sv(γ)rγ) = Hi(u(γ)

sv(γ)rγ) + Fi+1,i+1(u(γ)
sv(γ)rγ) for

1 ≤ i ≤ n − 1. If p = p̃γ, γ 
= id, then p̃ is a sum of monomials usvr of degree
N +1, and usvr can be expressed uniquely as a sum of monomials in u(γ), v(γ), so
we can also define Fii(p).

Finally, we should explain how to construct elements Fii(p) when p ∈ E[N + 1].
It is enough to consider the case when p is a monomial u(γ)sv(γ)r on which some
element γ 
= id acts by the nonzero eigenvalue µ(γ)s−r. We have just seen how to de-
fine Fii(u(γ)

sv(γ)rγ), and we set Fii(u(γ)
sv(γ)r) = (1− µr−s)−1[Fii(u(γ)

sv(γ)rγ),
Fii(γ

−1)].
We have thus constructed elements Fab(p) ∀ p ∈ C[u, v]� Γ, 1 ≤ a, b ≤ n. Let

B = {Fab(u
svrγ)|1 ≤ a, b ≤ n, r, s ≥ 0, γ ∈ Γ}.

Let us fix an ≤ order on B. We can assume that Fa1b1(u
s1vr1γ1) < Fa2b2(u

s2vr2γ2)
if a1 
= a2 and a2 = b2.

Theorem 8.1. The canonical map Dn
β=0,b=0 −→ grF (D

n
β,b) is an isomorphism.

Proof. We follow the same ideas as in [Gu2]. We will prove that, when β+λ−nλ|Γ|
4 
=

0, the set of ordered monomials in the elements of B is a vector space basis of Dn
β,b.
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Suppose that we have a nontrivial relation of the type

(57)
∑
d∈S1

∑
(A,B,R,S,γ,E)∈S2(d)

c(d,A,B,R, S, γ, E)M(d,A,B,R, S, γ, E) = 0,

where S1, S2(d) are finite sets, S1 ⊂ Z≥0, S2(d) ⊂ [1, n]×d × [1, n]×d × (Z≥0)
×d ×

(Z≥0)
×d × Γ×d × (Z>0)

×d, A = (a1, . . . , ad), B = (b1, . . . , bd), R = (r1, . . . , rd), S =
(s1, . . . , sd), γ = (γ1, . . . , γd), E = (e1, . . . , ed), [1, n] = {1, . . . , n} and

M(d,A,B,R, S, γ, E) = Fa1b1(u
s1vr1γ1)e1 · · ·Fadbd(u

sdvrdγd)ed

is an ordered monomial in the elements of B. (In particular, Faibi(u
sivriγi) 
=

Fajbj (u
sjvrjγj) if i 
= j.)

Let us choose a specific (ď, Ǎ, B̌, Ř, Š, γ̌, Ě) such that

(1)
∑d

g=1(rg + sg)eg has maximum value for which c(d,A,B,R, S, γ, E) 
= 0;

(2) among these, it has maximum value for
∑d

g=1(1− δagbg )eg ;

(3) among these, it has maximum value for
∑d

g=1 δagbgeg.

This choice may not be unique. Set M̌ = M(ď, Ǎ, B̌, Ř, Š, γ̌, Ě). Set δ =∑d
g=1 eg. Now suppose that l, l1, . . . , ln ∈ Z≥0 are such that l1 + · · · + ln = l − δ.

We let v = v1 ⊗ · · · ⊗ vl, v̂ = v̂1 ⊗ · · · ⊗ v̂l be the following elements of (Cn)⊗l for
l ≥ δ: for e1+ · · ·+ej−1+1 ≤ g ≤ e1+ · · ·+ej , set v

g = vbj , v̂
g = vaj

, mg = xsi
g yrig ,

γ̃g = γi
g ∈ Γ×l, and set vg = v̂g = vi if δ+ l1 + · · ·+ li−1 + 1 ≤ g ≤ δ+ l1 + · · ·+ li.

Because of our assumption that equality (57) holds,

(58)
∑
d∈S1

∑
(A,B,R,S,γ,E)∈S2(d)

c(d,A,B,R, S, γ, E)M(d,A,B,R, S, γ, E)(1⊗ v) = 0.

Consider the vector space basis of Ht,c(Γl)⊗C[Sl] (C
n)⊗l (with t, c, β,b as in section

6, so that this space is a module for Dn
β,b) given by the monomials x

qxl
l y

qyl
l · · ·xqx1

1 y
qy1
1 γ

⊗ v, where qxi , q
y
i ∈ Z≥0, γ ∈ Γ×l, v = v1 ⊗ · · · ⊗ vl with vg ∈ {v1, . . . , vn}. We can

decompose the left-hand side of (58) as a sum of vectors in that basis and do the
same for M̌(1 ⊗ v). The coefficient of mδmδ−1 · · ·m1γ̃δ · · · γ̃1 ⊗ v̂ in M̌(1 ⊗ v) is
equal to c̃c(ď, Ǎ, B̌, Ř, Š, γ̌, Ě) for some c̃ 
= 0 which depends on the multiplicities
ei, lj . Furthermore, the only other monomials in the left-hand side of (57) which can
produce a nonzero multiple ofmδmδ−1 · · ·m1γδ · · · γ1⊗v̂ when applied to 1⊗v differ
from M̌ only by the value of eg for g such that ag = bg,mg = 1, γ̃g = id. Because
of our assumption on the order on B, these elements always appear at the end of
each monomial in (57). Therefore, the coefficient of mδmδ−1 · · ·m1γγ · · · γ1 ⊗ v̂ in
the left-hand side of (58) can be viewed as a polynomial in l1, . . . , ln. Since this
polynomial vanishes for infinitely many values of these variables, which can be given
arbitrarily large independent values, it must vanish identically, so its coefficients
are zero and c(ď, Ǎ, B̌, Ř, Š, γ̌, Ě) = 0. Repeating this argument, we conclude
that all the coefficients c(d,A,B,R, S, γ, E) in (57) equal zero. This completes the

proof of the linear independance when β + λ − λn|Γ|
4 
= 0. This means that the

map Dn
β=0,b=0 � grF (D

n
β,b) is an isomorphism if β + λ − λn|Γ|

4 
= 0. By upper-
semicontinuity, it must be an isomorphism for any β,b. �
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Let Φl be the algebra homomorphism Dn
β,b −→ EndC(V

l) coming from the Dn
β,b-

module structure on Ht,c(Γl)⊗C[Sl] (C
n)⊗l.

Corollary 8.1 (of the proof of Theorem 8.1). Suppose that β + λ − λn|Γ|
4 
= 0.

Given M ∈ Dn
β,b, there exists an l � 0 such that Φl(M) is not identically zero.

9. Cyclotomic case

It is possible to generalize most of the results of [Gu1] and [Gu2] to the case
when Γ is a cyclic group of order d. In order to do this, we first have to consider a
family of graded Hecke algebras for the complex reflection groups Sl � Z/dZ which
were first introduced in [RaSh] and studied when d = 2 in [De1] and, in general, in
[De2]. We will then prove an equivalence of Schur-Weyl type between a localization
of a rational Cherednik algebra and an affine Yangian, generalizing the work in
[Gu1]. Afterwards, we will explain how to realize the Z/dZ-deformed double current
algebra Dn

β,b as a subalgebra of this affine Yangian.

9.1. Graded Hecke algebras for Sl � Z/dZ. Fix l, d ≥ 1. Set Γ = Z/dZ and
let Γl be the complex reflection group G(l, 1, d), which is the wreath product Γl =
Sl � Z/dZ = Z/dZ×l � Sl. It is generated by reflections σi,i+1 ∈ Sl, 1 ≤ i ≤ l − 1,

and by pseudo-reflections ξi of order d, so 〈ξji 〉d−1
j=0

∼= Z/dZ, 1 ≤ i ≤ l. Let h ∼= Cl

be its reflection representation and choose dual bases {y1, . . . , yl}, {x1, . . . , xl} of h
and h∗. Fix a primitive d th-root of unity ζ so that ξi(xi) = ζxi, ξi(yi) = ζ−1yi. Let

ei, i = 0, . . . , d− 1, be the primitive idempotents of Z/dZ, so ei =
1
d

∑d−1
j=0 ζ

−jiξj ,

and let ei,k be the idempotent of Γl corresponding to ei in the kth copy of Γ in Γl,

so ei,k = 1
d

∑d−1
j=0 ζ

−jiξjk.

Definition 9.1 ([RaSh]). Let κ ∈ C. We define the degenerate affine Hecke algebra
of Γl to be the algebra Hκ(Γl) generated by Γl and by the pairwise commuting
elements {ui}li=1 which obey the following relations:

ξjui = uiξj for any 1 ≤ i, j ≤ l, σiuj = ujσi if j 
= i, i+ 1,

σiui+1 = uiσi + κ

d−1∑
k=0

ξ−k
i ξki+1 for 1 ≤ i ≤ l − 1.

Remark 9.1. Note that, when r = 2, Γl is the Weyl group of type B (or C), but
the algebra Hκ(Γl) is not isomorphic to the degenerate Hecke algebra of this type
as defined originally in [Dr1], [Lu]. If κ 
= 0, then Hκ(Γl) ∼= Hκ=1(Γl).

Proposition 9.1. The elements of the form p(u1, . . . , ul)w constitute a basis of
Hκ(Γl), where w ∈ Γl and p(u1, . . . , ul) is a monomial in the variables u1, . . . , ul.

The proof of Proposition 9.1 given below uses the PBW property of a subalgebra
of Ht,c(Γl); see Proposition 9.2. It will be convenient to rewrite Definition 2.1 in a
slightly different form.
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Definition 9.2 ([DuOp, EtGi]). The rational Cherednik algebra Ht,c(Γl) of Γl

with (multi-)parameters t ∈ C, c = (κ, c1, . . . , cd−1) ∈ Cd is the algebra generated
by C[h], C[h∗] and Γl subject to the following relations:

σ · x · σ−1 = σ(x), σ · y · σ−1 = σ(y) for x ∈ h
∗, y ∈ h, σ ∈ Γl,

[yj , xi] = yjxi − xiyj = −κ

d−1∑
k=0

ζkξ−k
i σijξ

k
i if i 
= j,

[yi, xi] = yixi − xiyi = t+ κ
l∑

j=1

j �=i

d−1∑
k=0

ξ−k
i σijξ

k
i +

d−1∑
k=1

dck(ek,i − ek−1,i).

We denote by Yi,Ui the following elements of Ht,c(Γl) (see [DuOp]):

Yi =
1

2
(xiyi + yixi) =

t

2
+ xiyi +

κ

2

l∑
j=1

j �=i

d−1∑
k=0

ξ−k
i σijξ

k
i

+
1

2

d−1∑
k=1

dck(ek,i − ek−1,i),

Ui =
t

2
+ xiyi + κ

∑
1≤j<i

d−1∑
k=0

ξ−k
i σijξ

k
i +

d−1∑
k=1

dckek,i

= Yi −
κ

2

l∑
j=1

j �=i

sign(j − i)
d−1∑
k=0

ξ−k
i σijξ

k
i +

1

2

d−1∑
k=1

dck(ek,i + ek−1,i).(59)

In the computations below, the following formulas will be useful:

For i 
= j, [Yj , xi] = −κ

2

d−1∑
k=0

(ζkxj + xi)ξ
−k
i σijξ

k
i ,(60)

[Yi, xi] = txi +
κ

2

l∑
j=1

j �=i

d−1∑
k=0

(xi + ζkxj)ξ
−k
i σijξ

k
i +

1

2

d−1∑
k=1

dck(ek+1,i − ek−1,i)xi.(61)

We need to obtain an expression for [Yi,Yj ] for i 
= j which will be useful later,
so we compute: [1]

[Yi,Yj ] = xi[yi, xj ]yj + xj [xi, yj ]yi +
κ

2

⎡⎢⎣xiyi,

l∑
b=1
b �=j

d−1∑
k=0

ξ−k
j σbjξ

k
j

⎤⎥⎦(62)

+
κ

2

⎡⎢⎣ l∑
b=1
b �=i

d−1∑
k=0

ξ−k
i σbiξ

k
i , xjyj

⎤⎥⎦+
κ2

4

⎡⎢⎣ l∑
b=1
b �=i

d−1∑
m=0

ξ−m
i σbiξ

m
i ,

l∑
e=1
e �=j

d−1∑
k=0

ξ−k
j σejξ

k
j

⎤⎥⎦(63)

+
dκ

4

d−1∑
a=1
k=0

⎛⎜⎝
⎡⎢⎣ca(ea,i − ea−1,i),

l∑
b=1
b �=j

ξ−k
j σbjξ

k
j

⎤⎥⎦+

⎡⎢⎣ l∑
b=1
b �=i

ξ−k
i σbiξ

k
i , ca(ea,j − ea−1,j)

⎤⎥⎦
⎞⎟⎠ .(64)
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We compute each of the sums in (62),(63) and (64) separately.

(62) = −κxi

d−1∑
k=0

ζkξ−k
j σijξ

k
j yj + κxj

d−1∑
k=0

ζkξ−k
i σijξ

k
i yi

+
κ

2

d−1∑
k=0

[xiyi, ξ
−k
j σijξ

k
j ] +

κ

2

d−1∑
k=0

[ξ−k
i σijξ

k
i , xjyj ] = 0

(63) =
κ2

4

l∑
b=1

b�=i,j

d−1∑
k,m=0

[
ξ−m
i σbiξ

m
i , ξ−k

j σbjξ
k
j

]
+

κ2

4

l∑
b=1

b�=i,j

d−1∑
k,m=0

[ξ−m
i σbiξ

m
i , ξ−k

j σijξ
k
j ]

+
κ2

4

l∑
b=1

b�=i,j

d−1∑
k,m=0

[ξ−m
i σijξ

m
i , ξ−k

j σbjξ
k
j ]

=
κ2

4

l∑
b=1

b�=i,j

d−1∑
k,m=0

(
ξ−m+k
i ξmb ξ−k

j σbiσbj − ξ−k
j ξk+m

b ξ−m
i σbjσbi

+ ξ−m
i ξm+k

b ξ−k
j σbjσbi − ξ−k−m

j ξki ξ
m
b σbiσbj

+ ξ−m−k
i ξmj ξkb σbjσbi − ξ−k

j ξk+m
b ξ−m

i σbiσbj

)
=

κ2

4

l∑
b=1

b�=i,j

d−1∑
k,m=0

ξ−m−k
i ξmj ξkb [σbj , σbi]

(64) =
κ

4

d−1∑
a=1

dca

d−1∑
k=0

(
[(ea,i − ea−1,i), ξ

−k
j σijξ

k
j ] + [ξ−k

i σijξ
k
i , (ea,j − ea−1,j)]

)
= 0.

Therefore,

(65) [Yi,Yj ] =
κ2

4

l∑
b=1

b�=i,j

d−1∑
k,m=0

ξ−m−k
i ξmj ξkb [σbj , σbi].

Let H̃t,c(Γl) be the subalgebra of Ht,c(Γl) generated by Γl and Ui, 1 ≤ i ≤ l.

Proposition 9.2 ([DuOp]). The elements U1, . . . ,Ul commute pairwise. Moreover,
the elements of the form p(U1, . . . ,Ul)w, where p(U1, . . . ,Ul) is a monomial and

w ∈ Γl, form a vector space basis of the algebra H̃t,c(Γl).
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Proof. In view of equality (59) above, it is enough to show that

[Yi,Yj ] = −κ2

4

⎡⎢⎣ l∑
b=1

b�=i

sign(b− i)
d−1∑
k=0

ξ−k
i σbiξ

k
i ,

l∑
e=1

e�=j

sign(e− j)
d−1∑
m=0

ξ−m
j σejξ

m
j

⎤⎥⎦ .

Let us assume that i < j. The right-hand side is equal to

− κ2

4
sign(b− j)

d−1∑
k,m=0

l∑
b=1

b�=i,j

[ξ−k
i σjiξ

k
i , ξ

−m
j σbjξ

m
j ]

+
κ2

4
sign(b− i)

d−1∑
k,m=0

l∑
b=1

b�=i,j

[ξ−k
i σbiξ

k
i , ξ

−m
j σijξ

m
j ]

− κ2

4
sign

(
(b− i)(b− j)

) d−1∑
k,m=0

l∑
b=1

b�=i,j

[ξ−k
i σbiξ

k
i , ξ

−m
j σbjξ

m
j ]

=
κ2

4

d−1∑
k,m=0

∑
b<i

(
ξ−k−m
i ξkj ξ

m
b σjiσbj − ξ−m

j ξm+k
b ξ−k

i σbjσij − ξ−k
i ξm+k

b ξ−m
j σbiσij

+ ξ−m−k
j ξmi ξkb σijσbi − ξ−k+m

i ξ−m
j ξkb σbiσbj + ξ−m+k

j ξmb ξ−k
i σbjσbi

)
+

κ2

4

d−1∑
k,m=0

∑
b>j

(
− ξ−k−m

i ξkj ξ
m
b σjiσbj + ξ−m

j ξm+k
b ξ−k

i σbjσij + ξ−k
i ξm+k

b ξ−m
j σbiσij

− ξ−m−k
j ξmi ξkb σijσbi − ξ−k+m

i ξ−m
j ξkb σbiσbj + ξ−m+k

j ξmb ξ−k
i σbjσbi

)
+

κ2

4

d−1∑
k,m=0

∑
i<b<j

(
ξ−k−m
i ξkj ξ

m
b σjiσbj − ξ−m

j ξm+k
b ξ−k

i σbjσij + ξ−k
i ξm+k

b ξ−m
j σbiσij

− ξ−m−k
j ξmi ξkb σijσbi + ξ−k+m

i ξ−m
j ξkb σbiσbj − ξ−m+k

j ξmb ξ−k
i σbjσbi

)
=

κ2

4

l∑
b=1

b�=i,j

d−1∑
k,m=0

ξ−m−k
i ξmj ξkb [σbj , σbi] = [Yi,Yj ],

where the last equality is (65) below.
The second part of the proposition follows immediately from the PBW theorem

for Ht,c(Γl); see, e.g., [EtGi]. �
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Proof of Proposition 9.1. It follows from the definition of Hκ(Γl) that the elements
p(u1, . . . , un)w span Hκ(Γl) as a vector space. We have to show that they are
linearly independent. The operators Ui satisfy the same relations as the elements
ui in Hκ(Γl) (see [DuOp]). For instance,

σiUi+1 =
t

2
σi + σixi+1yi+1 + κ

∑
1≤j<i+1

d−1∑
k=0

σiξ
−k
i+1σi+1,jξ

k
i+1 + σi

d−1∑
k=1

dckek,i+1

=
t

2
σi + xiyiσi + κ

∑
j<i

d−1∑
k=0

ξ−k
i σijξ

k
i σi + κ

d−1∑
k=0

ξ−k
i ξki+1 +

d−1∑
k=1

dckea,iσi

= Uiσi + κ

d−1∑
k=0

ξ−k
i ξki+1.

This shows that we have an algebra epimorphism Hκ(Γl) −→ H̃t,c(Γl), which

must also be injective because of the PBW property of H̃t,c(Γl). �

Corollary 9.1 (Corollary of the proof of Proposition 9.1). The algebras Hκ(Γl) and

H̃t,c(Γl) are isomorphic.

From Corollary 9.1 and the computations before Proposition 9.2, we deduce the
following proposition.

Proposition 9.3. The algebra Hκ(Γl) can also be defined as the algebra generated
by elements yi, 1 ≤ i ≤ l, and γ ∈ Γl satisfying the following relations:

If i 
= j, [yi, yj ] =
κ2

4

l∑
b=1

b�=i,j

d−1∑
k,m=0

ξ−m−k
i ξmj ξkb [σbj , σbi], σyiσ

−1 = yσ(i),

ξayi = yiξa, σ ∈ Sl, 1 ≤ a ≤ l.

Setting yi,k = yiek,i, 1 ≤ i ≤ l, 0 ≤ k ≤ d − 1, we see that Hκ(Γl) can also be
defined in the following way, which will be useful later.

Proposition 9.4. The algebra Hκ(Γl) is isomorphic to the algebra generated by the
elements yi,k, 1 ≤ i ≤ l, 0 ≤ k ≤ d − 1, the idempotents ek,i ∈ C[Γl] and σ ∈ Sl

which satisfy the following relations:

[yi,k1
, yj,k2

] = 0 if k1 
= k2, ek1,iyi,k2
= δk1k2

yi,k2
= yi,k2

ek1,i,

ek1,jyi,k2
= yi,k2

ek1,j if i 
= j,

σyi,k = yσ(i),kσ, [yi,k, yj,k] =
d2κ2

4

l∑
b=1

b�=i,j

ek,iek,jek,b[σbi, σbj ] if i 
= j.(66)
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For each Weyl group, I. Cherednik has introduced the notion of double affine
Hecke algebras (DAHA) [Ch1]. These algebras afford two types of limit versions
called degenerate (trigonometric) DAHA’s and rational DAHA’s. These rational
Cherednik algebras can be defined for any finite complex reflection group, but
no such definition exists for affine or double affine Hecke algebras. We propose
to introduce the following algebra, which extends the definition of the degenerate
DAHA of type gll when d = 1.

Definition 9.3. We denote byHt,c(Γl) the algebra C[x
±
1 , . . . , x

±
l ]⊗C[x1,...,xl]Ht,c(Γl).

(We can localize Ht,c(Γl) at
⋃l

i=1{1, xi, x
2
i , . . .} since this is an Ore set.)

We can obtain a presentation for Ht,c(Γl) which is an affine version of Definition
9.1.

Proposition 9.5. The algebra Ht,c(Γl) can also be defined as the algebra generated
by x±

1 , . . . , x
±
l , γ ∈ Γl and the pairwise commuting elements u1, . . . , ul subject to the

following relations:

(1) The subalgebra generated by x±
1 , . . . , x

±
l , γ ∈ Γl is an epimorphic image of

C[x±
1 , . . . , x

±
l ]� Γl.

(2) The subalgebra generated by u1, . . . , ul and γ ∈ Γl is an epimorphic image
of Hκ(Γl).

(3) σ0uj − σ0(uj)σ0 = −κ〈α0, uj〉
∑d−1

k=0 ζ
−kξk1 ξ

−k
l , where σ0 = x1x

−1
l σ1l, u ∈

spanC{u1, . . . , ul} and α0 = u∗
l − u∗

1, {u∗
1, . . . , u

∗
l } being the basis dual to

{u1, . . . , ul}. (σ0(uj) is defined in analogy with the action of the affine Weyl

group on ĥ∗.)
(4) πui = ui+1π if i 
= l, πul = (u1 − t)π, where π = x1τ and τ = σ12σ23 · · ·

σl−1,l.

Corollary 9.2. For any c = (κ, c1, . . . , cd−1), Ht,c(Γl) ∼= Ht,c=(κ,ca=0)(Γl).

An isomorphism Ht,c(Γl)
∼−→ Ht,c=(κ,ca=0)(Γl) is given by

yi �→ yi −
(

d−1∑
k=1

dckek−1,i

)
x−1
i .

Proof. The second set of relations was already obtained in the proof of Proposition
9.1. We have to establish the third and fourth relations for Ui. The conclusion will
then follow from the PBW property of Ht,c(Γl). Suppose first that i 
= 1, l.
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σ0Ui =
t

2
σ0 + xix1x

−1
l yiσ1l + κ

∑
2≤j<i

d−1∑
k=0

ξ−k
i σijξ

k
i σ0 + κ

d−1∑
k=0

σ0ξ
−k
i σ1iξ

k
i

+
d−1∑
k=1

dckek,iσ0

=
t

2
σ0 + xix1[x

−1
l , yi]σ1l + xix1yix

−1
l σ1l + κ

∑
2≤j<i

d−1∑
k=0

ξ−k
i σijξ

k
i σ0

+ κ
d−1∑
k=0

x1x
−1
l ξ−k

i σilξ
k
i σ1l +

d−1∑
k=1

dckek,iσ0

=
t

2
σ0+κxix1

(
−x−1

l

d−1∑
k=0

ζkξ−k
l σilξ

k
l x

−1
l

)
σ1l+xi[x1, yi]x

−1
l σ1l+xiyix1x

−1
l σ1l

+ κ
∑

2≤j<i

d−1∑
k=0

ξ−k
i σijξ

k
i σ0 + κ

d−1∑
k=0

ζkξ−k
i σilξ

k
i x1x

−1
i σ1l +

d−1∑
k=1

dckek,iσ0

= −κ

d−1∑
k=0

xiξ
−k
l x−1

l σilξ
k
l x1x

−1
l σ1l + κxi

(
d−1∑
k=0

ζkξ−k
1 σ1iξ

k
1

)
x−1
l σ1l + Uiσ0

− κ
d−1∑
k=0

ξ−k
i σ1iξ

k
i σ0 + κ

d−1∑
k=0

ζkξ−k
i σilξ

k
i x1x

−1
i σ1l

= Uiσ0.

The other case left to check is i = 1. (The case i = l follows from this one.)

σ0U1 =
t

2
σ0 + x1x

−1
l xlylσ1l + x−1

l

d−1∑
a=1

ca

d−1∑
k=0

ζ−kaξkl x1σ1l

=
t

2
σ0 + x1ylσ1l +

d−1∑
a=1

ca

d−1∑
k=0

ζ−k(a−1)ξkl x
−1
l x1σ1l

=
t

2
σ0 + [x1, yl]σ1l + ylx1σ1l +

d−1∑
k=1

dckek−1,lσ0

=
t

2
σ0 + κ

d−1∑
k=0

ζkξ−k
1 σ1lξ

k
1σ1l + [yl, xl]σ0 + xlylσ0 +

d−1∑
k=1

dckek−1,lσ0

=
t

2
σ0 + κ

d−1∑
k=0

ζkξ−k
1 ξkl +

⎛⎝t+κ
∑

1≤j<l

d−1∑
k=0

ξ−k
l σjlξ

k
l +

d−1∑
k=1

dck(ek,l − ek−1,l)

⎞⎠σ0

+ xlylσ0 +

d−1∑
k=1

dckek−1,lσ0

= κ
d−1∑
k=0

ζkξ−k
1 ξkl + (Ul + t)σ0.
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We now have to check the third relation involving π. First, let us assume that
i 
= l. Then

πUi =
t

2
π + x1

⎛⎝xi+1yi+1 + κ
∑

2≤j<i+1

d−1∑
k=0

ξ−k
i+1σi+1,jξ

k
i+1 +

d−1∑
k=1

dckek,i+1

⎞⎠ τ

=
t

2
π +

(
xi+1[x1, yi+1] + xi+1yi+1x1

+κ
∑

2≤j<i+1

d−1∑
k=0

ξ−k
i+1σi+1,jξ

k
i+1x1 +

d−1∑
k=1

dckek,i+1x1

⎞⎠ τ

=
t

2
π +

(
xi+1

(
κ

d−1∑
k=0

ζkξ−k
1 σ1,i+1ξ

k
1

)
+ xi+1yi+1x1

+ κ
∑

1≤j<i+1

d−1∑
k=0

ξ−k
i+1σi+1,jξ

k
i+1x1 − κ

d−1∑
k=0

ξ−k
i+1σ1,i+1ξ

k
i+1x1

)
τ +

d−1∑
k=1

dckek,i+1π

= Ui+1π.

Finally, we check the relation for i = l. Then

πUl =
t

2
π +

⎛⎝x2
1y1 + κx1

∑
2≤j≤l

d−1∑
k=0

ξ−k
1 σ1jξ

k
1 +

d−1∑
a=1

ca

d−1∑
k=0

ζ−kax1ξ
k
1

⎞⎠ τ

=
t

2
π +

⎛⎝x1y1x1 + x1[x1, y1] + κx1

∑
2≤j≤l

d−1∑
k=0

ξ−k
1 σ1jξ

k
1 +

d−1∑
k=1

dckek+1,1x1

⎞⎠ τ

=
t

2
π + x1y1π +

⎛⎝x1

⎛⎝−t− κ
∑

1<j≤l

d−1∑
k=0

ξ−k
1 σ1jξ

k
1 −

d−1∑
k=1

dck(ek,1 − ek−1,1)

⎞⎠
+ κx1

∑
2≤j≤l

d−1∑
k=0

ξ−k
1 σ1jξ

k
1

)
τ +

d−1∑
k=1

dckek+1,1π

= (U1 − t)π.

�

9.2. Schur-Weyl duality in the trigonometric setting. In this section, we
establish Schur-Weyl type equivalences for Hκ(Γl) and for Ht,c(Γl). This will have

applications for Ht,c(Γl) in the next subsection. Recall that Ĉn−1 = (cij)0≤i,j≤n−1

is the n× n Cartan matrix of affine type Ân−1.

Definition 9.4. Let λ ∈ C. We denote by Y n,d
λ the algebra generated by the

elements X±
i,r,j, H

±
i,r,j, 1 ≤ i ≤ n− 1, 0 ≤ j ≤ d− 1, r ≥ 0 which satisfy the following

relations: for any 1 ≤ i1, i2 ≤ n− 1, r1, r2, s ∈ Z≥0:
If j1 
= j2, then

[X±
i1,r1,j1

, X±
i2,r2,j2

] = [X±
i1,r1,j1

, X∓
i2,r2,j2

] = 0,

[Hi1,r1,j1 , X
±
i2,r2,j2

] = [Hi1,r1,j1 , Hi2,r2,j2 ] = 0,
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[Hi1,r1,j, Hi2,r2,j] = 0, [Hi1,0,j, X
±
i2,s,j

] = ±ci1,i2X
±
i2,s,j

,(67)

[X+
i1,r1,j

, X−
i2,r2,j

] = δi1,i2Hi1,r1+r2,j,

[Hi1,r1+1,j, X
±
i2,r2,j

]− [Hi1,r1,j, X
±
i2,r2+1,j] = ±λ

2
ci1,i2S(Hi1,r1,j, X

±
i2,r2,j

),(68)

[X±
i1,r1+1,j, X

±
i2,r2,j

]− [X±
i1,r1,j

, X±
i2,r2+1,j] = ±λ

2
ci1,i2S(X

±
i1,r1,j

, X±
i2,r2,j

).(69)

For any 0 ≤ j1, j2 ≤ d− 1,

(70)
∑

π∈Sm

[
X±

i1,rπ(1),j1
,
[
X±

i1,rπ(2),j1
, . . . , [X±

i1,rπ(m),j1
, X±

i2,s,j2
] . . .

]]
= 0,

where m = 1− cij , r1, . . . , rm, s ∈ Z≥0.

Remark 9.2. The algebra Y n,d
λ is isomorphic to (Y n

λ )⊗d, where Y n
λ = Y n,d=1

λ is
the Yangian (of finite type) for sln. The reason for using the notation above will
become clear in the next definition. We will write X±

i,j, Hi,j instead of X±
i,0,j, Hi,0,j.

Definition 9.5. We denote by Ŷn,d
λ,β , β = (β0, β1, . . . , βd−1) ∈ Cd, the algebra

generated by the elements X±
i,r,j, Hi,r,j, 0 ≤ i ≤ n − 1, 0 ≤ j ≤ d − 1, r ≥ 0 which

satisfy the relations in Definition 9.4 (extended to i1 = 0 or i2 = 0) except that
certain relations for i1 = 0 or i2 = 0 must be modified:

[H0,r1+1,i, X
+
0,r2,j

]− [H0,r1,i, X
+
0,r2+1,j] = δi,j−1λS(H0,r1,i, X

+
0,r2,j

),(71)

[H0,0,i, X
±
1,r,j] = ∓δi,j−1X

±
1,r,j, [H0,0,i, X

+
0,r,j] = 2δi,j−1X

+
0,r,j,(72)

[X+
0,r,i, X

−
0,s,j] = δi−1,jH0,r+s,j,(73)

[H1,0,i, X
−
0,r,j] = δi,j+1X

−
0,r,j, [Hn−1,0,i, X

+
0,r,j] = −δi+1,jX

+
0,r,j,(74)

[X+
0,r1+1,j, X

+
1,r2,j

]− [X+
0,r1,j

, X+
1,r2+1,j] = (βj − λ)X+

1,r2,j
X+

0,r1,j
− βjX

+
0,r1,j

X+
1,r2,j

,(75)

[X−
0,r1+1,j, X

−
1,r2,j+1]− [X−

0,r1,j
, X−

1,r2+1,j+1] = βj+1X
−
1,r2,j+1X

−
0,r1,j

(76)

−(βj+1 − λ)X−
0,r1,j

X−
1,r2,j+1,

[X+
0,r1+1,j+1, X

+
n−1,r2,j

]− [X+
0,r1,j+1, X

+
n−1,r2+1,j] = (βj − λ)X+

0,r1,j+1X
+
n−1,r2,j

(77)

−βjX
+
n−1,r2,j

X+
0,r1,j+1,

[X−
0,r1+1,j, X

−
n−1,r2,j

]− [X−
0,r1,j

, X−
n−1,r2+1,j] = βjX

−
0,r1,j

X−
n−1,r2,j

(78)

−(βj − λ)X−
n−1,r2,j

X−
0,r1,j

,

[X+
n−1,r1,j1

, X+
0,r2,j2

] = 0 = [X−
0,r1,j1

, X−
1,r2,j2

] if j2 �= j1 + 1.(79)

From relations (73) and (75)-(78), we can obtain relations similar to (68).

Remark 9.3. Proposition 4.3 states that Ŷn,d
λ=0,β=0 is isomorphic to Uŝln(C[u

±1, w]

�Γ) with Γ acting on u by ξ(u) = ζu and trivially on w. The subalgebra of

Ŷn,d
λ,β generated by the elements X±

i,j = X±
i,0,j and Hi,j = Hi,0,j is isomorphic to

Uŝln(C[u
±1]�Γ). It is explained in [GHL] that sln(C[u

±1]�Γ) ∼= slnd(C[t
±1]) with

t = ud and thus sln(C[u
±1, w]� Γ) ∼= slnd(C[t

±1, w]).

Definition 9.6. A module M over Ŷn,d
λ,β is said to have trivial central charge if the

action of the element
∑d−1

j=0

∑n−1
i=0 Hi,0,j is trivial.
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Definition 9.7. The quotient of Ŷn,d
λ,β by the ideal generated by the central element∑d−1

j=0

∑n−1
i=0 Hi,0,j will be denoted LYd

λ,β .

The main results of this section are the next two propositions, which extend the
results in [Gu1].

Proposition 9.6. If λ = κd, there exists a functor SW : Hκ(Γl) − modR −→
Y n,d
λ −modl,intL given by M �→ M⊗C[Sl] (C

n)⊗l which is an equivalence of categories
if l + 1 < n.

Theorem 9.1. If λ = κd and βj = t
2 − λ(n−2)

4 +
(cj−cj+1)d

2 (where c0 = 0 = cd),

there exists a functor SW : Ht,c(Γl)−modR −→ Ŷn,d
λ,β −modl,intL,triv given by M �→

M ⊗C[Sl] (C
n)⊗l which is an equivalence of categories if l + 2 < n.

Proof of Proposition 9.6. We use the presentation of Hκ(Γl) given in Proposition
9.4. Set ω±

i,j = ± 1
4

∑
α∈∆+ S

(
[X±

i,j, X
±
α,j], X

∓
α,j

)
− 1

4S(X
±
i,j, Hi,j), where X±

α

is the matrix Eij ∈ sln if ±α = εi − εj , and J(E±
i )j = X±

i,1,j + λω±
i,j. Setting

J(E±
i )j(m ⊗ v) =

∑l
k=1myk,j ⊗ E

±,(k)
i (v) and X±

i,j(m ⊗ v) =
∑l

k=1mej,k ⊗
E

±,(k)
i (v) for m ∈ M,v ∈ (Cn)⊗l gives M ⊗C[Sl] (C

n)⊗l a structure of a left module
over Y n

λ . This follows from [Dr1] and equality (66). Since yk1,j1yk2,j2 = yk2,j2yk1,j1

and ej1,k1
ej2,k2

= 0 if j1 
= j2, we can conclude that these module structures

commute, so we get a functor SW : Hκ(Γl)−modR −→ Y n,d
λ −modl,intL .

Assume now that l + 1 < n and let N be an integrable Y n,d
λ -module of level l.

Since it is a direct sum of finite-dimensional modules over sln(C[Z/dZ]), according
to Proposition 6.2 (see also [ATY]), N ∼= M ⊗C[Sl] (C

n)⊗l for a certain Γl-module
M . It follows also from [Dr1] (or by mimicking the argument in section 4.5 in

[ChPr1]) that J(E±
i )j =

∑l
k=1myk,j ⊗ E

±,(j)
i (v) and that yi,k, 1 ≤ i ≤ l satisfy

(66). That yi,k1
and yj,k2

commute as operators on M if k1 
= k2 is a consequence
of [J(E±

i )k1
, J(E±

j )k2
] = 0 if k1 
= k2. �

Proof of Theorem 9.1. This is similar to the proof of theorem 5.4 in [Gu1]. Let
M ∈ Ht,c − modR. We define a linear automorphism T of M ⊗C[Sl] (C

n)⊗l by

T (m ⊗ v) = mx
−δi1n

1 · · ·x−δiln
l ⊗ v+1, where v+1 = vi1+1 ⊗ · · · ⊗ vil+1 if v =

vi1 ⊗ · · · ⊗ vil . Ŷ
n,d
λ,β admits an automorphism ρ defined by

ρ
(
X±

i,r,j

)
=

r∑
p=0

(
r
p

)(
λ

2

)p

X±
i−1,r−p,j if i 
= 0, 1 and similarly for ρ(Hi,r,j),(80)

ρ
(
X+

1,r,j

)
=

r∑
p=0

(
r
p

)
βp
jX

+
0,r−p,j, ρ

(
X+

0,r,j

)
=

r∑
p=0

(
r
p

)
βp
j−1X

+
n−1,r−p,j−1,(81)

ρ
(
X−

1,r,j

)
=

r∑
p=0

(
r
p

)
βp
jX

−
0,r−p,j−1, ρ

(
X−

0,r,j

)
=

r∑
p=0

(
r
p

)
βp
jX

−
n−1,r−p,j,(82)

ρ
(
H1,r,j

)
=

r∑
p=0

(
r
p

)
βp
jH0,r−p,j−1, ρ

(
H0,r,j

)
=

r∑
p=0

(
r
p

)
βp
jHn−1,r−p,j.(83)
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Let ϕ : Y n,d
λ −→ EndC(M ⊗C[Sl] (C

n)⊗l) be the algebra homomorphism coming

from the Y d
λ module structure on M ⊗C[Sl] (C

n)⊗l. The next lemma is the crucial
part of the proof of Proposition 9.1.

Lemma 9.1. Under the same hypotheses on the parameters as in Theorem 9.1,
the following equalities hold:

ϕ
(
X±

i,r,j

)
= T ◦ ϕ

(
ρ
(
X±

i,r,j

))
◦ T−1 if 2 ≤ i ≤ n− 1,

ϕ
(
X±

1,r,j

)
= T 2 ◦ ϕ

(
ρ2
(
X±

1,r,j

))
◦ T−2

(84)

and similarly for Hi,r,j instead of X±
i,r,j.

Proof. We give a direct, detailed proof of this equality similar to the first approach
to lemma 6.2 in [Gu1]. We only need to prove it for r = 1 and for X+

i,1,f .

We have the following expressions for ω+
1,f and ω+

n−1,f :

ω+
1,f =

1

4

n∑
j=3

S(Ej2,f , E1j,f )−
1

4
S(E12,f , H1,f ),

ω+
n−1,f = −1

4

n−2∑
j=1

S(Ejn,f , En−1,j,f )−
1

4
S(En−1,n,f , Hn−1,f ).

Fix v = vi1 ⊗ · · · ⊗ vil ∈ (Cn)⊗l. Suppose that j1, . . . , jp (resp. η1, . . . , ηe) are
exactly the values of j (resp. of η) such that ij = n (resp. iη = n − 1). Then

T 2(m⊗ v) = mx−1
j1

· · ·x−1
jp

x−1
η1

· · ·x−1
ηe

⊗ v+2. Set x
−1
j1,...,jp

= x−1
j1

· · ·x−1
jp

, x−1
η1,...,ηe

=

x−1
η1

· · ·x−1
ηe

. Since X+
1,1,f = J(X+

1 )f − λω+
1,f , we obtain:

X+
1,1,f

(
T 2(m⊗ v)

)
=

l∑
k=1

mx−1
j1,...,jp

x−1
η1,...,ηe

Ykef,k ⊗ E
(k)
12 (v+2)(85)

−λ

4

n∑
j=3

S(Ej2,f , E1j,f )(mx−1
j1,...,jp

x−1
η1,...,ηe

⊗ v+2)(86)

+
λ

4
S(E12,f , H1,f )(mx−1

j1,...,jp
x−1
η1,...,ηe

⊗ v+2).(87)

In the summation (85), we can assume that k = jr for some r, since otherwise

E
(k)
12 (v+2) = 0.

(85) =

p∑
r=1

e∑
b=1

mx−1
j1,...,jp

x−1
η1

· · ·x−1
ηb−1

[x−1
ηb

,Yjr ]x
−1
ηb+1

· · ·x−1
ηe

ef,jr ⊗ E
(jr)
12 (v+2)

(88)

+

p∑
r=1

p∑
b=1

mx−1
j1

· · ·x−1
jb−1

[x−1
jb

,Yjr ]x
−1
jb+1

· · ·x−1
jp

x−1
η1,...,ηe

ef,jr ⊗ E
(jr)
12 (v+2)(89)

+

l∑
k=1

mYkx
−1
j1,...,jp

x−1
η1,...,ηe

ef,k ⊗ E
(k)
12 (v+2).(90)
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The last expression is equal to T 2
(
J(X+

n−1)f−1(m⊗v)
)
. As for the term on line

(87) above, it is equal to λ
4T

2
(
S
(
En−1,n,f−1, Hn−1,f−1

)
(m⊗ v)

)
. Therefore,

X+
1,1,f

(
T 2(m⊗ v)

)
= (88) + (89) + (86) + T 2

(
X+

n−1,1,f−1(m⊗ v)
)
− (102).

(The expression (102) appears explicitly below.)
We need to decompose the sums (88) and (89). Sum (88) equals

= −κ

2

p∑
r=1

e∑
b=1

b−1∑
k=0

mx−1
j1,...,jp

x−1
η1

· · ·x−1
ηb−1

(x−1
ηb

+ ζ−kx−1
jr

)ξ−k
ηb

σηb,jr ξ
k
ηb

x−1
ηb+1

· · ·

x−1
ηe

ef,jr ⊗ E
(jr)
12 (v+2)

= −κ

2

p∑
r=1

e∑
b=1

mx−1
j1,...,jp

x−1
η1

· · ·x−1
ηb−1

x−1
ηb

x−1
ηb+1

· · ·x−1
ηe

ef,ηbef,jr ⊗ E
(ηb)
12

(
σηb,jr (v+2)

)
(91)

− κ

2

p∑
r=1

e∑
b=1

mx−1
j1,...,jp

x−1
η1

· · ·x−1
ηb−1

x−1
jr

x−1
ηb+1

· · ·x−1
ηe

ef,ηbef+1,jr⊗E
(ηb)
12

(
σηb,jr (v+2)

)
.(92)

As for the sum (89), it equals

=

p∑
a=1

p∑
b=1
b �=a

mx−1
j1

· · ·x−1
jb−1

[x−1
jb

,Yja ]x
−1
jb+1

· · ·x−1
jp

x−1
η1,...,ηe

ef,ja ⊗ E
(ja)
12 (v+2)

+

p∑
a=1

mx−1
j1

· · ·x−1
ja−1

[x−1
ja

,Yja ]x
−1
ja+1

· · ·x−1
jp

x−1
η1,...,ηe

ef,ja ⊗ E
(ja)
12 (v+2)

= −κ

2

p∑
a=1

p∑
b=1
b �=a

d−1∑
k=0

mx−1
j1,...,jb−1

(x−1
jb

+ ζ−kx−1
ja

)ξ−k
jb

σjb,jaξ
k
jb
x−1
jb+1,...,jp

x−1
η1,...,ηe

ef,ja

⊗ Eja
12 (v+2)

+

p∑
a=1

mx−1
j1,...,ja−1

(
κ

2

l∑
q=1
q �=ja

d−1∑
k=0

(x−1
ja

+ ζ−kx−1
q )ξ−k

ja
σja,qξ

k
ja

+ tx−1
ja

+
x−1
ja

2

d−1∑
b=1

dcb(eb+1,ja − eb−1,ja)

)
x−1
ja+1,...,jp

x−1
η1,...,ηe

ef,ja ⊗ E
(ja)
12 (v+2)(93)

= −κd

2

p∑
a=1

p∑
b=1
b �=a

(
mx−1

j1,...,jb−1
x−1
jb

σja,jb(x
−1
jb+1,...,jp

)x−1
η1,...,ηe

ef,jbef−δ(a>b),ja(94)

⊗ E
(jb)
12

(
σja,jb(v+2)

)
+mx−1

j1,...,jb−1
x−1
ja

σjb,ja (x
−1
jb+1,...,jp

)x−1
η1,...,ηe

ef,jbef+1−δ(a>b),ja ⊗ E
(jb)
12

(
σja,jb(v+2)

))
(95)

+

p∑
a=1

(
t+

1

2

d−1∑
b=1

dcb(eb,ja − eb−2,ja)

)
mx−1

j1,...,jp
x−1
η1,...,ηe

ef,ja ⊗ E
(ja)
12 (v+2)(96)

+
κd

2

p∑
a=1

l∑
q=1
q �=ja

mx−1
j1,...,ja−1

x−1
ja

ef,jaσja,q(x
−1
ja+1,...,jp

x−1
η1,...,ηe

)ef,q ⊗ E
(q)
12

(
σja,q(v+2)

)
(97)

+
κd

2

p∑
a=1

l∑
q=1
q �=ja

mx−1
j1,...,ja−1

x−1
q ef−1,jaσja,q(x

−1
ja+1,...,jp

x−1
η1,...,ηe

)ef,q⊗E
(q)
12

(
σja,q(v+2)

)
,(98)

where δ(a > b) = 1 if a > b and = 0 if a ≤ b.
We now focus on ω+

1,f

(
T 2(m ⊗ v)

)
and T 2

(
ω+
n−1,f−1(m ⊗ v)

)
. Earlier, we have

used the equality λω+
1,f

(
T 2(m ⊗ v)

)
= −(86) − (87). We can decompose (86) by
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considering the cases when E1j and Ej2 act on the same tensorand and on different
ones:

−(86) = λ

(
n− 2

4

) l∑
k=1

mx−1
j1,...,jp

x−1
η1,...,ηeef,k ⊗ E

(k)
12 (v+2)(99)

+
λ

2

n∑
j=3

l∑
q=1

iq+2=j

p∑
b=1

mx−1
j1,...,jp

x−1
η1,...,ηeef,qef,jb⊗E

(q)
12

(
σq,jb(v+2)

)
,(100)

λT 2(ω+
n−1,f−1(m⊗ v)

)
= −λ

4
T 2

(
n−2∑
j=1

S(Ejn,f−1, En−1,j,f−1)(m⊗ v)

)
(101)

− λ

4
T 2

(
S(En−1,n,f−1,Hn−1,f−1)(m⊗ v)

)
.(102)

We observe that −(87) = (102). As with (86), we can decompose (101):

(101) = −λ

(
n− 2

4

) l∑
k=1

mx−1
j1,...,jp

x−1
η1,...,ηe

ef,k ⊗
(
E

(k)
n−1,n(v)

)
+2

(103)

− λ

2
T 2

⎛⎜⎝n−2∑
j=1

l∑
q=1

iq=j

p∑
b=1

mef−1,qef−1,jb ⊗ E
(q)
n−1,n

(
σq,jb(v)

)⎞⎟⎠ .(104)

We note that (99)− (103) = λ
(
n−2
2

)
T 2

(
En−1,n,f−1(m⊗ v)

)
and

(104) = −λ

2

n−2∑
j=1

l∑
q=1

iq=j

p∑
b=1

mef−1,qef−1,jbx
−1
j1,...,jp

xjbx
−1
q x−1

η1,...,ηe
⊗ E

(q)
12

(
σq,jb(v+2)

)
.

To obtain the last expression, note that iq 
= ja, ηh for any a, h since iq = j and we
consider values of j different from n and n− 1.

We now decompose the sums (97) and (98) into three different sums. In the first
case, q = jb 
= ja; in the second case, q = ηh; in the third case q 
= ja, ηh for any
a, h. The sum (97) equals

κd

2

p∑
a=1

p∑
b=1
b �=a

mx−1
j1,...,ja

ef,jaσja,jb(x
−1
ja+1,...,jp

)x−1
η1,...,ηeef,jb ⊗E

(jb)
12

(
σja,jb(v+2)

)
(105)

+
κd

2

p∑
a=1

e∑
h=1

mx−1
j1,...,ja

ef,jax
−1
ja+1,...,jp

x−1
η1,...,ηexηhx

−1
ja ef,ηh ⊗ E

(ηh)
12 (σja,ηh

(
v+2)

)
(106)

+
κd

2

p∑
a=1

l∑
q=1

q �=jd,ηh

mx−1
j1,...,ja

ef,jax
−1
ja+1,...,jp

x−1
η1,...,ηeef,q ⊗E

(q)
12

(
σja,q(v+2)

)
.(107)

As for the sum (98), it equals

κd

2

p∑
a=1

p∑
b=1
b �=a

mx−1
j1,...,ja−1

x−1
jb

ef−1,jaσja,jb(x
−1
ja+1,...,jp

)x−1
η1,...,ηeef,jb(108)

⊗ E
(jb)
12

(
σja,jb(v+2)

)
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+
κd

2

p∑
a=1

e∑
h=1

mx−1
j1,...,ja−1

x−1
ηh ef−1,jax

−1
ja+1,...,jp

x−1
η1,...,ηexηhx

−1
ja ef,ηh(109)

⊗ E
(ηh)
12

(
σja,ηh(v+2)

)
+
κd

2

p∑
a=1

l∑
q=1

q �=jd,ηh

mx−1
j1,...,ja−1

x−1
q ef−1,jax

−1
ja+1,...,jp

x−1
η1,...,ηeef−1,q(110)

⊗E
(q)
12

(
σja,q(v+2)

)
.

The following equalities hold since we are assuming that λ = κd:

(87) = −(102), (107) = (100), (110) = −(104), (109) = −(91),

(92) = −(106), (94) = −(108).(95) = −(105).

Using our assumption that βf = t
2 − λ(n−2)

4 +
(cf−cf+1)d

2 , we can prove that

X+
1,1,f

(
T 2(m⊗ v)

)
= T 2

((
X+

n−1,1,f−1 + (βf + βf−1)X
+
n−1,f−1

)
(m⊗ v)

)
:

X+
1,1,f

(
T 2(m⊗ v)

)
−T 2

(
X+

n−1,1,f−1(m⊗ v)
)

= (85) + (86) + (87)−T 2
(
X+

n−1,1,f−1(m⊗ v)
)

= (88) + (89) + T 2
(
J(X+

n−1)f−1(m⊗ v)
)
− T 2

(
X+

n−1,1,f−1(m⊗ v)
)
+ (86) + (87)

= (91) + · · ·+ (98) + (86) + (87) + (101) + (102)

= (91) + · · ·+ (96) + (105) + · · ·+ (110)− (99)− (100)

+ (87) + (102) + (103) + (104)

= ((87) + (102))+((91)+(109)) + ((92)+(106)) + ((94) + (108)) + ((95) + (105))

+ (96)− (99) + (−(100) + (107)) + ((104) + (110)) + (103)

= (96)− (99) + (103)

=

(
t− λ

(
n− 2

2

)
+

d(cf−1 − cf+1)

2

)
T 2

(
En−1,n,f−1(m⊗ v)

)
= (βf + βf−1)T

2
(
X+

n−1,f−1(m⊗ v)
)
. �

Using the equalities (84), we can extend ϕ to an algebra homomorphism Ŷn,d
λ,β −→

EndC(M⊗C[Sl] (C
n)⊗l) (also denoted ϕ) by setting ϕ(X±

0,r,j) = T ◦ϕ(ρ(X±
0,r,j)◦T−1.

We have thus constructed a functor Ht,c(Γl) −modR −→ Ŷn,d
λ,β −modint,lL,triv. The

proof that it is an equivalence of categories when l+2 < n follows the same approach
as the second part of the proof of theorem 5.4 in [Gu1].

Let N ∈ Ŷn,d
λ,β −modint,lL,triv. Since N is a module over Y d

λ and over Uŝln(C[u
±1]�

Γ), it is equal to M ⊗C[Sl] (C
n)⊗l for some Γl-module M , which is also a module

over Hκ(Γl) and C[x±1
1 , . . . , x±

l ] � Γl. We have to show that these two structures
can be glued together to give M a structure of a module over Ht,c(Γl).
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Fix 1 ≤ j, k ≤ l, j 
= k. We choose v to be the following generator of (Cn)⊗l as
a Usln-module: v = vi1 ⊗ vi2 ⊗ · · · ⊗ vil where ib = b+ 3 if b < j, b 
= k, ib = b+ 2
if b > j, b 
= k, ij = 2 and ik = 1.

We can express ω−
2,f explicitly in the following way:

ω−
2 |(Cn)⊗l = −1

4

n∑
b=1

b�=2,3

sign(2− b)S(E3b,f , Eb2,f )−
1

4
S(E32,f , H2,f ).

We find that (X−
2,1,f1

X+
0,f2

−X+
0,f2

X−
2,1,f1

)(m⊗ v) equals

l∑
r=1

l∑
s=1

(
mxref2−1,ref1,sYs ⊗ E

(s)
32 E

(r)
n1 (v)−mef1,sYsxref2−1,r ⊗ E

(r)
n1 E

(s)
32 (v)

)
− λ[ω−

2,f1
, X+

0,f2
](m⊗ v)

=m[xkef2−1,k,Yjef1,j ]⊗ E
(j)
32 E

(k)
n1 (v)− δf1,f2

λ

2
mxjef2−1,jef1,k ⊗ E

(k)
31 E

(j)
n2 (v)

− δf1,f2−1
λ

2
mxkef2−1,kef1,j ⊗ E

(k)
31 E

(j)
n2 (v)

=m

(
[xkef2−1,k,Yjef1,j ]−δf1,f2

λ

2
xjσjkef2−1,kef1,j−δf1,f2−1

λ

2
xkσjkef1,jef2−1,k

)
⊗ ṽ,

where ṽ = E
(j)
32 E

(k)
n1 (v). We know from relation (69) that [X−

2,1,f1
, X+

0,f2
] = 0, so

the last expression is equal to 0. Since ṽ is a generator of (Cn)⊗l as a Usln-module,
it follows, from Lemma 6.1 and our assumption that λ = κd, that

m

(
[xkef2−1,k,Yjef1,j ]

−δf1,f2
κd

2
xjσjkef2−1,kef1,j − δf1,f2−1

κd

2
xkσjkef1,jef2−1,k

)
= 0.

Summing over f1, f2 = 0, 1, . . . , d − 1 and using
∑d−1

f=0 ef,kef,j = 1
d

∑d−1
f=0 ξ

−f
k ξfj ,∑d−1

f=0 ef−1,kef,j =
1
d

∑d−1
f=0 ζ

−fξ−f
k ξfj yields relation (60).

We now consider the relation between xk and Yk. Setting

ν1,f =
1

4

n∑
i=3

S(E1i,f , Ei1,f ) +
1

2
S(E12,f , E21,f )−

1

4

n∑
i=3

S(E2i,f , Ei2,f )−
1

2
H2

1,f ,

we have that Hi,1,j(m⊗ v) = J(Hi)j(m⊗ v)− λν1,f (m⊗ v) with J(Hi)(m⊗ v) =∑l
k=1 mYkef,k ⊗H

(k)
i (v).
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Fix k, 1 ≤ k ≤ l. We now choose v to be equal to v = vi1 ⊗ · · · ⊗ vil with
ib = b + 2 if b < k, ib = b + 1 if b > k and ik = 1. Note that vib 
= 2, n, n − 1 ∀b
since l + 1 < n− 1 by assumption. We obtain:

[E
(r)
n1 , ν1](v) =

1

2

n∑
b=3

E
(r)
nb E

(k)
b1 (v) =

1

2
σkrE

(k)
n1 (v) if r 
= k,(111)

[E
(k)
n1 , ν1](v) =

(
n− 2

4

)
E

(k)
n1 (v).

We need (111) to obtain equation (112) below. We compute that (H1,1,fX
+
0,f −

X+
0,fH1,1,f )(m⊗ v) equals

l∑
r=1

l∑
s=1

mef,rxref,sYs ⊗Hs
1E

(r)
n1 (v)−

l∑
s=1

l∑
r=1

mef,sYsef,rxr ⊗ E
(r)
n1 H

(s)
1 (v)

− λ[ν1,f , X
+
0,f ](m⊗ v)

= −mef,kYkef,kxk ⊗ E
(k)
n1 H

(k)
1 (v) +

λ

2

l∑
r=1

r �=k

mxref−1,ref,k ⊗ σkrE
(k)
n1 (v)

+ λ

(
n− 2

4

)
mef,kxk ⊗ E

(k)
n1 (v)

= −mYkef,kxkef−1,k ⊗ ṽ +
λ

2

l∑
r=1

r �=k

mxrσkref−1,kef,r ⊗ ṽ(112)

+ λ

(
n− 2

4

)
mxkef−1,k ⊗ ṽ,

where ṽ = E
(k)
n1 (v). We want to obtain a similar relation with H1,1,f replaced by

Hn−1,1,f .
From the definition of νn−1,f−1,

νn−1,f−1 =
1

4

n−2∑
b=1

S(Ebn,f−1, Enb,f−1) +
1

2
S(En−1,n,f−1, En,n−1,f−1)

− 1

4

n−2∑
b=1

S(Eb,n−1,f−1, En−1,b,f−1)−
1

2
H2

n−1,f−1.

We can check that [E
(r)
n1 , νn−1](v) = 0 if r 
= k and
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[E
(k)
n1 , νn−1](v) = −1

2

n−2∑
b=2

l∑
s=1

s �=k

E
(k)
b1 E

(s)
nb (v)−

(
n− 2

4

)
E

(k)
n1 (v)

= −1

2

l∑
s=1

s �=k

σksE
(k)
n1 (v)−

(
n− 2

4

)
E

(k)
n1 (v).(113)

The equation (113) allows us to compute that [Hn−1,1,f−1, X
+
0,f ](m⊗ v) equals:

=

l∑
r,s=1

(
mef,rxref−1,sYs ⊗H

(s)
n−1E

(r)
n1 (v)−mef−1,sYsef,rxr ⊗ E

(r)
n1 H

(s)
n−1(v)

)
−λ[νn−1,f−1, X

+
0,f ](m⊗ v)

= mxkef−1,kYkef−1,k ⊗H
(k)
n−1E

(k)
n1 (v)

−λ

2

l∑
r=1

r �=k

mxk (σkref−1,kef−1,r)⊗ E
(k)
n1 (v)−

(
n− 2

4

)
ef−1,k ⊗ E

(k)
n1 (v).(114)

From relations (67), (74), (75) and (77) in Ŷn,d
λ,β , we know that

X+
0,1,f = −[H1,1,f , X

+
0,f ] + (βf − λ)H1,fX

+
0,f − βfX

+
0,fH1,f

= −[Hn−1,1,f−1, X
+
0,f ]− βf−1Hn−1,f−1X

+
0,f + (βf−1 − λ)X+

0,fHn−1,f−1.

Applying these two expressions for X+
0,1,f to m ⊗ v, using equalities (112), (114)

and the fact that H1,fX
+
0,f (v) = 0 and X+

0,fHn−1,f−1(v) = 0, we obtain that the
expression

mYkxkef−1,k ⊗ ṽ − λ

2

l∑
r=1

r �=k

mxrσkref−1,kef,rṽ − λ

(
n− 2

4

)
mxkef−1,k ⊗ ṽ

− βfX
+
0,fH1,f (m⊗ v)

equals

mxkYkef−1,k ⊗ ṽ +
λ

2

l∑
r=1

r �=k

mxkσkref−1,kef−1,r ⊗ ṽ

+λ

(
n− 2

4

)
mxkef−1,k ⊗ ṽ − βf−1Hn−1,f−1X

+
0,f (m⊗ v).

Therefore,

m[xk,Yk]ef−1,k ⊗ ṽ +
λ

2

l∑
r=1

r �=k

m(xref,k + xkef−1,k)σkref−1,k ⊗ ṽ

+λ

(
n− 2

2

)
mxkef−1,k ⊗ ṽ + (βf−1 + βf )mxkef−1,k ⊗ ṽ = 0.
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Since ṽ is a generator of (Cn)⊗l as a Usln-module, it follows from Lemma 6.1

and our assumption that βf = t
2 − λ(n−2)

4 +
(cf−cf+1)d

2 , λ = κd that

m

(
[xk,Yk]ef−1,k +

κd

2

l∑
r=1

r �=k

(xref,k + xkef−1,k)σkref−1,k

+
(
t+

d

2
(cf−1 − cf+1)

)
xkef−1,k

)
vanishes. Taking the sum over f = 0, . . . , d− 1, we obtain that

m([xk,Yk]+txk+
κ

2

l∑
j=1

j �=k

d−1∑
s=0

(xk+ζsxj)ξ
−s
k σjkξ

s
k+

1

2

d−1∑
a=1

dca(ea+1,k−ea−1,k)xk) = 0.

Therefore, we have proved that the Hκ(Γl)- and the C[x±1
1 , . . . , x±1

l ]�Γl-module
structure on M can be glued to yield a right module over Ht,c(Γl). To prove
that SW is an equivalence, we are left to show that it is fully faithful. That SW

is injective on morphisms is true because this is true for the Schur-Weyl duality
functor between C[Sl] and Usln, so suppose that f : SW(M1) −→ SW(M2) is a

Ŷn,d
λ,β-homomorphism. Schur-Weyl equivalence for sln(C[u

±1]) and Y n
λ says that it

must be of the form f(m1 ⊗v) = g(m1)⊗v, ∀m1 ∈ M1, where g ∈ HomC(M1,M2)
is a linear map which is also a homomorphism of right C[x±1

1 , . . . , x±1
l ]- and Hκ(Γl)-

modules. Since Ht,c(Γl) is generated by these two subalgebras, g is even a homo-
morphism of Ht,c(Γl)-modules. Therefore, f = SW(g) and this completes the proof
of Proposition 9.1. �

It was explained after Proposition 9.5 that Ht,c(Γl) ∼= Ht,c(κ,ca=0)(Γl). There-

fore, it is reasonable to expect that Ŷn,d
λ,β depends only on two parameters. This is

confirmed in the next proposition. Let β̃ = 2
∑d−1

i=0 βi and let Ŷn,d

λ,β̃
be the algebra

defined as Ŷn,d
λ,β with all the βj and λ − βj replaced by λ

2 in relations (75)–(78)

except that (75) and (76) for the cases j = 0 and j = d− 1, respectively, must be
replaced by

[X+
0,r1+1,0, X

+
1,r2,0

]− [X+
0,r1,0

, X+
1,r2+1,0]

= (β̃ − λ

2
)X+

1,r2,0
X+

0,r1,0
− (β̃ +

λ

2
)X+

0,r1,0
X+

1,r2,0
,

[X−
0,r1+1,d−1, X

−
1,r2,0

]− [X−
0,r1,d−1, X

−
1,r2+1,0]

= (β̃ +
λ

2
)X−

1,r2,0
X−

0,r1,d−1 − (β̃ − λ

2
)X−

0,r1,d−1X
−
1,r2,0

.

Proposition 9.7. The following formulas define an algebra isomorphism Ψ:Ŷn,d
λ,β

∼−→
Ŷn,d

λ,β̃
for any λ, β:

Ψ(X−
0,r,j) =

r∑
s=0

(
r
s

)
2s

(
β0 + · · ·+ βj − j

λ

2

)s

X−
0,r−s,j for 0 ≤ j ≤ d− 1,

Ψ(X+
0,r,j) =

r∑
s=0

(
r
s

)
2s

(
β0 + · · ·+ βj−1 − (j − 1)

λ

2

)s

X+
0,r−s,j for 1 ≤ j ≤ d,
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Ψ(H0,r,j) =
r∑

s=0

(
r
s

)
2s

(
β0 + · · ·+ βj − j

λ

2

)s

H0,r−s,j for 0 ≤ j ≤ d− 1.

For 1 ≤ i ≤ n− 1,

Ψ(X±
i,r,j) =

r∑
s=0

(
r
s

)(
2β0 + · · ·+ 2βj−1+βj−(2j − 1)

λ

2

)s
X±

i,r−s,j for 0≤j≤d− 1

and similarly for Hi,r,j

In view of Proposition 4.3 and the comments preceding it, the next corollary is
not surprising.

Corollary 9.3. Ŷn,d
λ,β is isomorphic to an affine Yangian Ŷnd

λ,β′ for slnd.

Ŷnd
λ,β′ is generated by X±

i,r, Hi,r for 0 ≤ i ≤ nd− 1, r ∈ Z≥0 and an isomorphism

sends X+
i,r,j �→ X+

jn+i,r for 0 ≤ i ≤ n − 1, 0 ≤ j ≤ d − 1, X−
i,r,j �→ X−

jn+i,r for

1 ≤ i ≤ n − 1, 0 ≤ j ≤ d − 1, X−
0,r,j �→ X−

(j+1)n,r for 0 ≤ j ≤ d − 1 (and

X−
dn,r = X−

0,r).

In the definition of affine Yangians in [Gu2], the parameter β appears in relations
involving X±

0,r, X
±
1,s and also X±

0,r, X
±
n−1,s. However, the relations before Proposi-

tion 9.7 involve only X±
0,r and X±

1,s. This is not a contradiction; affine Yangians

can also be defined in such a way: this is explained in section 3 in [FFNR].

As is explained in [Gu2], when λ = 0 and β 
= 0, the affine Yangian Ŷn
λ=0,β

is isomorphic to ŝln(D(C×)), the universal central extension of sln over the ring
D(C×) of differential operators on the torus C×. Corollary 9.3 then implies that

Ŷn,d
λ=0,β is isomorphic to ŝlnd(D(C×)) when β1 
= 0. This is a consequence of the

following observation: D(C×) � Γ ∼= Md(D(C×)), an isomorphism being given on
the generators of D(C×)� Γ by

w �→

⎛⎜⎜⎜⎜⎜⎜⎜⎝

d∂ 0 · · · · · · 0

0 d∂ − 1 0 · · ·
...

...
. . .

. . .
. . .

...

0
. . . 0 d∂−(d−2) 0

0 0 · · · 0 d∂−(d−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, u �→

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
... 0 1

. . .
...

...
. . .

. . .
. . . 0

0
. . .

. . . 0 1
z 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and the generator ξ of Z/dZ goes to the diagonal matrix with entries 1, ζ−1, ζ−2, . . . ,
ζ−(d−1). Here, we view D(C×) � Γ as the algebra generated by w, u, u−1 and
ξj ∈ Γ, j = 0, . . . , d−1, with the relations wu−uw = u, ξw = wξ and ξu = ζuξ; we
view D(C×) as the algebra generated by ∂, z with the relation ∂z − z∂ = z. Note
that ud is mapped to the diagonal matrix with entries z, z, . . . , z on the diagonal.

9.3. Dn
β,b(Z/dZ) as a subalgebra of LYd

λ,β. Since Ht,c(Γl) ↪→ Ht,c(Γl), we may

expect Dn
β,b(Z/dZ) to be isomorphic to a subalgebra of LYd

λ,β . This is indeed true.

Definition 9.8. Let Ld
λ,β be the subalgebra of LYd

λ,β generated by X±
i,r,j, Hi,r,j,

X+
0,r,j, X

−
0,r+1,j for 1 ≤ i ≤ n− 1, r ≥ 0, 0 ≤ j ≤ d− 1.
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In order to prove Theorem 9.3 below, we need to construct a Schur-Weyl functor
between Ld

λ,β and Ht,c(Γl). As in [Gu1], we have to compute how X−
0,1,j acts

on M ⊗C[Sl] (C
n)⊗l for a right Ht,c(Γl)-module M . For m ∈ M , we find that

[J(H1)f , X
−
0,f−1](m⊗ v) equals

l∑
k=1

mx−1
k Ykef,k ⊗ E

(k)
1n (v) +

l∑
j,k=1

j �=k

m[x−1
k ,Yj ]ef−1,kef,j ⊗H

(j)
1 E

(k)
1n (v)

=
1

2

l∑
k=1

m(yk + x−1
k ykxk)ef,k ⊗ E

(k)
1n (v)

− κ

2

l∑
j,k=1

j �=k

m

(
d−1∑
i=0

(ζ−ix−1
j + x−1

k )ξ−i
k σjkξ

i
k

)
ef,kef,j ⊗H

(j)
1 E

(k)
1n (v)

=
l∑

k=1

mykef,k ⊗ E
(k)
1n (v) +

1

2

l∑
k=1

m[x−1
k , yk]xkef,k ⊗ E

(k)
1n (v)

− κd

2

l∑
j,k=1

j �=k

mx−1
k σjkef,kef,j ⊗H

(j)
1 E

(k)
1n (v)

=
l∑

k=1

mykef,k ⊗ E
(k)
1n (v)

+
1

2

l∑
k=1

m

⎛⎜⎝tx−1
k + κ

l∑
j=1

j �=k

d−1∑
i=0

x−1
k ξ−i

k σjkξ
i
k

+
d−1∑
a=1

dcax
−1
k (ea,k − ea−1,k)

)
ef,k ⊗ E

(k)
1n (v)

− κd

2

l∑
j,k=1

j �=k

mx−1
k ef,kef,j ⊗

(
E

(j)
11 E

(k)
1n − E

(j)
12 E

(k)
2n

)
(v)

=

l∑
k=1

m(yk +
t

2
x−1
k )ef,k ⊗ E

(k)
1n (v) +

d

2

l∑
k=1

mx−1
k (cf − cf+1)ef,k ⊗ E

(k)
1n (v)

+
κd

2

l∑
j,k=1

j �=k

mx−1
k ef,kef,jσjk ⊗ E

(k)
1n (v)

− κd

2

∑
j �=k

mx−1
k ef,kef,j ⊗

(
E

(j)
11 E

(k)
1n − E

(j)
12 E

(k)
2n

)
(v)

=

l∑
k=1

m(yk +
t

2
x−1
k )ef,k ⊗ E

(k)
1n (v) + κd

l∑
j,k=1

j �=k

mx−1
k ef,kef,j ⊗ E

(j)
12 E

(k)
2n (v)

+
κd

2

l∑
j,k=1

j �=k

n∑
a=3

mx−1
k ef,kef,j⊗E

(j)
1a E

(k)
an (v)+

d

2

l∑
k=1

mx−1
k (cf − cf+1)ef,k⊗E

(k)
1n (v).
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We compute that [ν1,f , X
−
0,f−1](m⊗ v) equals

1

2

n∑
i=3

l∑
j,k=1

j �=k

mx−1
k ef,jef,k ⊗ E

(j)
1i E

(k)
in (v) +

n− 2

4

l∑
k=1

mx−1
k ef,k ⊗ E

(k)
1n (v)

+

l∑
j,k=1

j �=k

mx−1
k ef,jef,k ⊗ E

(j)
12 E

(k)
2n (v)−

l∑
j,k=1

j �=k

x−1
k ef,jef,k ⊗H

(j)
1 E

(k)
1n (v).

Combining all these computations and using relations (76),(74) along with the

assumption that λ = κd, βf = t
2 +

d(cf−cf+1)
2 − λ(n−2)

4 , we find that X−
0,1,f−1(m⊗

v) =
∑l

k=1mykef,k ⊗ E
(k)
1n =

∑l
k=1mef−1,kyk ⊗ E

(k)
1n .

We have the following analog of theorem 8.4 in [Gu1].

Theorem 9.2. Suppose that λ = κd and βj = t
2 − λ(n−2)

4 +
(cj−cj+1)d

2 (where

c0 = 0). There exists a functor SW : Ht,c(Γl)−modR −→ Ld
λ,β −modl,intL which is

given by SW(M) = M ⊗C[Sl] (C
n)⊗l. This functor is an equivalence of categories if

l + 2 < n.

Proof. That the functor SW is well defined is a consequence of the calculations
above concerning the action of X−

0,1,f on Vl. The rest of the proof follows the same
lines as the proof of Theorem 9.1. �

Theorem 9.3. Suppose that λ̃ = − 2λ
d , b̃ξj = − 2

d

∑d−1
k=0 ζ

jk
(
βk − λ

2

)
, b̃ = (λ̃, b̃ξ1 ,

. . . , b̃ξd−1
) and β̃ = − 1

d

∑d−1
j=0(2βj − λ) + λ̃ = − 2

d

∑d−1
j=0 βj +

3λ
d . Then the algebras

Ld
λ,β and Dn

β̃,b̃
(Z/dZ) are isomorphic.

This is a generalization of theorem 10.1 in [Gu2].

Proof. Our strategy is to construct an epimorphism π : Dn
β̃,b̃

(Z/dZ) � Ld
λ,β and

to use Corollary 8.1 to show that it is injective. We start by observing that

we have a homomorphism π : g̃ln(C[Z/dZ]) −→ Ld
λ,β which allows us to de-

fine unambiguously elements Eij(γ), Eij,f ∈ Ld
λ,β as images of the correspond-

ing elements in g̃ln(C[Z/dZ]). In particular, Eij,f = 1
d

∑d−1
k=0 ζ

fkEij(ξ
k), Hi,f =

1
dHi(1) +

1
d

∑d−1
k=1 ζ

fk
(
Eii(ξ

k) − Ei+1,i+1(ξ
k)
)
for 1 ≤ i ≤ n − 1 and H0,f =

1
d

∑d−1
k=1 ζ

fk
(
Enn(ξ

k)− ζkE11(ξ
k)
)
+ 1

d

(
Enn(1)− E11(1)

)
.

To extend π, we start by setting π
(
En1(u)

)
=

∑d−1
j=0 X

+
0,j, π

(
E1,n−1(v)

)
=∑d−1

k=0[X
−
0,1,k, X

−
n−1,k] and π

(
En2(u)

)
=

∑d−1
j=0 [X

+
0,j, X

+
1,j], π

(
E2,n−1(v)

)
=∑d−1

k=0

[
[X−

1,k+1, X
−
0,1,k], X

−
n−1,k

]
. Then we compute that [π

(
En2(u)

)
, π

(
E2,n−1(v)

)
]

equals
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d−1∑
j,k=0

[
[X+

0,j, X
+
1,j],

[
[X−

1,k+1, X
−
0,1,k], X

−
n−1,k

]]

=

d−1∑
k=0

[[
[X+

0,k+1, X
+
1,k+1], [X

−
1,k+1, X

−
0,1,k]

]
, X−

n−1,k

]
=

d−1∑
k=0

[
[X+

0,k+1, X
−
0,1,k], X

−
n−1,k

]
+

[[
X−

1,k+1, [H0,1,k, X
+
1,k+1]

]
, X−

n−1,k

]
=

d−1∑
k=0

(
[H0,1,k, X

−
n−1,k] +

[
[X−

1,k+1,−X+
1,1,k+1

+ (βk+1 − λ)X+
1,k+1H0,k − βk+1H0,kX

+
1,k+1], X

−
n−1,k

])
=

d−1∑
k=0

(
X−

n−1,1,k + βkH0,kX
−
n−1,k − (βk − λ)X−

n−1,kH0,k

)
+

d−1∑
k=0

(
[(λ− βk+1)H1,k+1H0,k + βk+1H0,kH1,k+1, X

−
n−1,k]

)
=

d−1∑
k=0

(
X−

n−1,1,k+

(
βk − λ

2

)
X−

n−1,k+
λ

2
S
(
X−

n−1,k,H0,k

))
+

d−1∑
k=0

λH1,k+1X
−
n−1,k.(115)

We set π
(
En1(v)

)
= − 1

2

∑d−1
i,j,k=0

[
[X−

0,1,i, En1,j], En1,k

]
, where the element En1,k

is given by En1,k =
[[

· · · [X−
n−1,k, X

−
n−2,k], · · ·

]
, X−

1,k

]
. Then

π
(
En1(v)

)
= −

d−1∑
j=0

([
[X−

0,1,j, En1,j+1], En1,j

]
+

1

2

[
[X−

0,1,j, En1,j], En1,j

]
+

1

2

[
[X−

0,1,j, En1,j+1], En1,j+1

])
.

(116)

We also set π
(
E1,n−1(u)

)
=

∑d−1
j,k=0

[
E1n,j, [X

+
0,k, E1,n−1,k]

]
, where the elements

are simply given by E1,n−1,k =
[
X+

1,k,
[
· · · , [X+

n−3,k, X
+
n−2,k] · · ·

]]
and E1n,j =[

X+
1,j,

[
· · · , [X+

n−2,j, X
+
n−1,j] · · ·

]]
. Then

π
(
E1,n−1(u)

)
=

d−1∑
k=0

([
E1n,k, [X

+
0,k, E1,n−1,k]

]
(117)

+
[
E1n,k−1, [X

+
0,k, E1,n−1,k]

])
.
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We have to find [π
(
En1(v)

)
, π

(
E1,n−1(u)

)
]. Computing separately the commuta-

tor of each pair of sums in (116) and (117), we find that they are all equal to zero
except the following one:

d−1∑
j,k=0

[[
[X−

0,1,j, En1,j+1], En1,j

]
,
[
E1n,k−1, [X

+
0,k, E1,n−1,k]

]]
,

which equals

d−1∑
j,k=0

[[[
[X−

0,1,j, En1,j+1], En1,j

]
, E1n,k−1

]
, [X+

0,k, E1,n−1,k]
]

+

d−1∑
j,k=0

[
E1n,k−1,

[[
[X−

0,1,j, [X
+
0,k, E1,n−1,k]], En1,j+1

]
, En1,j

]]

=

d−1∑
j=0

([[
[X−

0,1,j, En1,j+1],Hn1,j

]
, [X+

0,j+1, E1,n−1,j+1]
]

+
[[
[X−

0,1,j,Hn1,j+1], En1,j

]
, [X+

0,j+2, E1,n−1,j+2]
])

−
d−1∑
j=0

[
E1n,j,

[[
[H0,1,j, E1,n−1,j+1], En1,j+1

]
, En1,j

]]

=

d−1∑
j=0

[
[X−

0,1,j, En1,j+1], [X
+
0,j+1, E1,n−1,j+1]

]
−

d−1∑
j=0

[
E1n,j,

[[
[H0,1,j, E1,n−1,j+1], En1,j+1

]
, En1,j

]]

=

d−1∑
j=0

([
[−H0,1,j, E1,n−1,j+1], En1,j+1

]
+

[
E1n,j,

[
[[X+

1,1,j+1, E2,n−1,j+1]

− (βj+1 − λ)E1,n−1,j+1H0,j + βj+1H0,jE1,n−1,j+1, En1,j+1], En1,j

]])
=

d−1∑
j=0

([
[X+

1,1,j+1, E2,n−1,j+1], En1,j+1

]
+ [λE1,n−1,j+1H0,j + βj+1[H0,j,

[[E1,n−1,j+1], En1,j+1] + [E1n,j,−λEn,n−1,j+1En1,j + βj+1[En,n−1,j+1, En1,j]]
)

=

d−1∑
j=0

(
− J(En,n−1)j+1 − λ

[
[ω+

1,j+1, E2,n−1,j+1], En1,j+1

]
+ βj+1En,n−1,j+1

)
(118)

+

d−1∑
j=0

(
λEn,n−1,j+1(Hn1,j −H0,j) + λE1,n−1,j+1En1,j+1

)
.
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Using (115) and (118), we conclude that
[
π
(
En1(v)

)
, π

(
E1,n−1(u)

)]
−
[
π
(
En2(u)

)
,

π
(
E2,n−1(v)

)]
equals

−
d−1∑
k=0

(
X−

n−1,1,k +

(
βk − λ

2

)
X−

n−1,k +
λ

2
S(X−

n−1,k, H0,k)

)

+
d−1∑
k=0

(
−λ

2
S(H1,k+1, X

−
n−1,k) + J(En,n−1)k −

(
βk − λ

2

)
En,n−1,k

)

−λ

4

d−1∑
k=0

⎛⎝n−2∑
j=3

S(Ej,n−1,k, Enj,k)+S(Hn−1,2,k, En,n−1,k)+S(En,n−1,k, Hn1,k)

⎞⎠
+

λ

4

d−1∑
k=0

(
S(En,n−1,k, H1,k) + S(E1,n−1,k, En1,k)− S(En2,k, E2,n−1,k)

)
− λ

2

d−1∑
k=0

(
S(En,n−1,k, Hn1,k−1 −H0,k−1) + S(E1,n−1,k, En1,k)

)
= −

d−1∑
k=0

(
2

(
βk −

λ

2

)
En,n−1,k +

λ

2d
(1− ζk)

(
S
(
En,n−1(ξ

k), E11(ξ
−k)

)
+S

(
En,n−1(ξ

k), E22(ξ
−k)

)))
−λ

2

d−1∑
k=0

⎛⎝n−2∑
j=1

S(Ej,n−1,k, Enj,k)+S(Hn−1,2,k, En,n−1,k)+S(En,n−1,k, Hn1,k)

⎞⎠.

The last expression is exactly what one obtains by applying π to the right-hand
side of equation (35) (except for the first term) in the case a = n, b = 1, c =
n− 1, d = 2 for the algebra Dn

β̃,b̃
(Z/dZ).

In order to verify that π respects relation (36), we now compute that
[
π
(
En1(u)

)
,

π
(
E2,n−1(v)

)]
equals

d−1∑
j,k=0

[
X+

0,k,
[
[X−

1,j+1, X
−
0,1,j], X

−
n−1,j

]]
=

d−1∑
j=0

[[
X−

1,j+1, [X
+
0,j+1, X

−
0,1,j]

]
, X−

n−1,j

]

=
d−1∑
j=0

[
[X−

1,j+1, H0,1,j], X
−
n−1,j

]
= −

d−1∑
j=0

[X−
1,1,j+1 + βj+1X

−
1,j+1H0,j

− (βj+1 − λ)H0,jX
−
1,j+1, X

−
n−1,j]

=− λ

d−1∑
j=0

X−
n−1,jX

−
1,j+1 =

λ̃

4

d−1∑
i=0

ζiS
(
π
(
En,n−1(ξ

−i)
)
, π

(
E21(ξ

i)
))

.

The other cases of relation (35) for arbitrary a 
= b 
= c 
= a 
= d 
= c and of
relation (36) for arbitrary a 
= b 
= c 
= d 
= a follow from the two cases above.
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Let Ψl : L
d
λ,β −→ EndC(V

l) be the algebra map coming from the Ld
λ,β-module

structure on Vl given by Theorem 9.2. Then one can check that Ψl ◦ π = Φl with
Φl as defined at the end of section 8. From Corollary 8.1, we can deduce that π
must be injective. �
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