Unitary genuine principal series of the metaplectic group
HTML articles powered by AMS MathViewer
- by Alessandra Pantano, Annegret Paul and Susana A. Salamanca-Riba
- Represent. Theory 14 (2010), 201-248
- DOI: https://doi.org/10.1090/S1088-4165-10-00367-5
- Published electronically: February 15, 2010
- PDF | Request permission
Abstract:
This paper presents some recent progress on the classification of the unitary genuine irreducible representations of the metaplectic group $Mp(2n)$. Our focus will be on Langlands quotients of genuine minimal principal series; the main result is an embedding of the set of unitary parameters of such representations into the union of spherical unitary parameters for certain split orthogonal groups. The latter are known from work of D. Barbasch; hence we obtain the non-unitarity of a large (conjecturally complete) set of parameters for Langlands quotients of genuine principal series of $Mp(2n)$.References
- Jeffrey Adams, Nonlinear covers of real groups, Int. Math. Res. Not. 75 (2004), 4031–4047. MR 2112326, DOI 10.1155/S1073792804141329
- Jeffrey Adams and Dan Barbasch, Genuine representations of the metaplectic group, Compositio Math. 113 (1998), no. 1, 23–66. MR 1638210, DOI 10.1023/A:1000450504919
- J. Adams, D. Barbasch, A. Paul, P. Trapa, and D. A. Vogan Jr., Unitary Shimura correspondences for split real groups, J. Amer. Math. Soc. 20 (2007), no. 3, 701–751. MR 2291917, DOI 10.1090/S0894-0347-06-00530-3
- D. Barbasch, Unitary spherical spectrum for split classical groups, preprint, arXiv:math/ 0609828v4 [math.RT].
- Dan Barbasch, Relevant and petite $K$-types for split groups, Functional analysis VIII, Various Publ. Ser. (Aarhus), vol. 47, Aarhus Univ., Aarhus, 2004, pp. 35–71. MR 2127163
- Dan Barbasch, Dan Ciubotaru, and Alessandra Pantano, Unitarizable minimal principal series of reductive groups, Representation theory of real reductive Lie groups, Contemp. Math., vol. 472, Amer. Math. Soc., Providence, RI, 2008, pp. 63–136. MR 2454332, DOI 10.1090/conm/472/09237
- Dan Barbasch and Allen Moy, Reduction to real infinitesimal character in affine Hecke algebras, J. Amer. Math. Soc. 6 (1993), no. 3, 611–635. MR 1186959, DOI 10.1090/S0894-0347-1993-1186959-0
- D. Barbasch, A. Pantano, Petite $K$-types for nonspherical minimal principal series, preprint.
- Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535–552. MR 985172, DOI 10.1090/S0894-0347-1989-0985172-6
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001. An overview based on examples; Reprint of the 1986 original. MR 1880691
- A. W. Knapp and Gregg Zuckerman, Classification theorems for representations of semisimple Lie groups, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Lecture Notes in Math., Vol. 587, Springer, Berlin, 1977, pp. 138–159. MR 0476923
- Jian-Shu Li, Singular unitary representations of classical groups, Invent. Math. 97 (1989), no. 2, 237–255. MR 1001840, DOI 10.1007/BF01389041
- Alessandra Pantano, Annegret Paul, and Susana A. Salamanca-Riba, The omega-regular unitary dual of the metaplectic group of rank 2, Council for African American Researchers in the Mathematical Sciences. Vol. V, Contemp. Math., vol. 467, Amer. Math. Soc., Providence, RI, 2008, pp. 1–47. MR 2484675, DOI 10.1090/conm/467/09130
- —, The genuine omega-regular unitary dual of the metaplectic group, preprint.
- Tomasz Przebinda, The duality correspondence of infinitesimal characters, Colloq. Math. 70 (1996), no. 1, 93–102. MR 1373285, DOI 10.4064/cm-70-1-93-102
- Susana Salamanca-Riba, On the unitary dual of some classical Lie groups, Compositio Math. 68 (1988), no. 3, 251–303. MR 971329
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 0450380, DOI 10.1007/978-1-4684-9458-7
- D. J. Simms, Lie groups and quantum mechanics, Lecture Notes in Mathematics, No. 52, Springer-Verlag, Berlin-New York, 1968. MR 0232579, DOI 10.1007/BFb0069914
- Birgit Speh and David A. Vogan Jr., Reducibility of generalized principal series representations, Acta Math. 145 (1980), no. 3-4, 227–299. MR 590291, DOI 10.1007/BF02414191
- David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR 632407
Bibliographic Information
- Alessandra Pantano
- Affiliation: Department of Mathematics, University of California at Irvine, Irvine, California 92697
- Email: apantano@math.uci.edu
- Annegret Paul
- Affiliation: Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008
- Email: annegret.paul@wmich.edu
- Susana A. Salamanca-Riba
- Affiliation: Department of Mathematics, New Mexico State University, Las Cruces, New Mexico 88003
- Email: ssalaman@nmsu.edu
- Received by editor(s): May 26, 2009
- Published electronically: February 15, 2010
- Additional Notes: This research was supported by NSF grants DMS 0554278 and DMS 0201944.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 14 (2010), 201-248
- MSC (2010): Primary 22E45
- DOI: https://doi.org/10.1090/S1088-4165-10-00367-5
- MathSciNet review: 2593919