Unitary genuine principal series of the metaplectic group
Authors:
Alessandra Pantano, Annegret Paul and Susana A. Salamanca-Riba
Journal:
Represent. Theory 14 (2010), 201-248
MSC (2010):
Primary 22E45
DOI:
https://doi.org/10.1090/S1088-4165-10-00367-5
Published electronically:
February 15, 2010
MathSciNet review:
2593919
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper presents some recent progress on the classification of the unitary genuine irreducible representations of the metaplectic group $Mp(2n)$. Our focus will be on Langlands quotients of genuine minimal principal series; the main result is an embedding of the set of unitary parameters of such representations into the union of spherical unitary parameters for certain split orthogonal groups. The latter are known from work of D. Barbasch; hence we obtain the non-unitarity of a large (conjecturally complete) set of parameters for Langlands quotients of genuine principal series of $Mp(2n)$.
- Jeffrey Adams, Nonlinear covers of real groups, Int. Math. Res. Not. 75 (2004), 4031–4047. MR 2112326, DOI https://doi.org/10.1155/S1073792804141329
- Jeffrey Adams and Dan Barbasch, Genuine representations of the metaplectic group, Compositio Math. 113 (1998), no. 1, 23–66. MR 1638210, DOI https://doi.org/10.1023/A%3A1000450504919
- J. Adams, D. Barbasch, A. Paul, P. Trapa, and D. A. Vogan Jr., Unitary Shimura correspondences for split real groups, J. Amer. Math. Soc. 20 (2007), no. 3, 701–751. MR 2291917, DOI https://doi.org/10.1090/S0894-0347-06-00530-3
- D. Barbasch, Unitary spherical spectrum for split classical groups, preprint, arXiv:math/ 0609828v4 [math.RT].
- Dan Barbasch, Relevant and petite $K$-types for split groups, Functional analysis VIII, Various Publ. Ser. (Aarhus), vol. 47, Aarhus Univ., Aarhus, 2004, pp. 35–71. MR 2127163
- Dan Barbasch, Dan Ciubotaru, and Alessandra Pantano, Unitarizable minimal principal series of reductive groups, Representation theory of real reductive Lie groups, Contemp. Math., vol. 472, Amer. Math. Soc., Providence, RI, 2008, pp. 63–136. MR 2454332, DOI https://doi.org/10.1090/conm/472/09237
- Dan Barbasch and Allen Moy, Reduction to real infinitesimal character in affine Hecke algebras, J. Amer. Math. Soc. 6 (1993), no. 3, 611–635. MR 1186959, DOI https://doi.org/10.1090/S0894-0347-1993-1186959-0
- D. Barbasch, A. Pantano, Petite $K$-types for nonspherical minimal principal series, preprint.
- Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535–552. MR 985172, DOI https://doi.org/10.1090/S0894-0347-1989-0985172-6
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI https://doi.org/10.1007/BF01389157
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001. An overview based on examples; Reprint of the 1986 original. MR 1880691
- A. W. Knapp and Gregg Zuckerman, Classification theorems for representations of semisimple Lie groups, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Springer, Berlin, 1977, pp. 138–159. Lecture Notes in Math., Vol. 587. MR 0476923
- Jian-Shu Li, Singular unitary representations of classical groups, Invent. Math. 97 (1989), no. 2, 237–255. MR 1001840, DOI https://doi.org/10.1007/BF01389041
- Alessandra Pantano, Annegret Paul, and Susana A. Salamanca-Riba, The omega-regular unitary dual of the metaplectic group of rank 2, Council for African American Researchers in the Mathematical Sciences. Vol. V, Contemp. Math., vol. 467, Amer. Math. Soc., Providence, RI, 2008, pp. 1–47. MR 2484675, DOI https://doi.org/10.1090/conm/467/09130
- ---, The genuine omega-regular unitary dual of the metaplectic group, preprint.
- Tomasz Przebinda, The duality correspondence of infinitesimal characters, Colloq. Math. 70 (1996), no. 1, 93–102. MR 1373285, DOI https://doi.org/10.4064/cm-70-1-93-102
- Susana Salamanca-Riba, On the unitary dual of some classical Lie groups, Compositio Math. 68 (1988), no. 3, 251–303. MR 971329
- Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380
- D. J. Simms, Lie groups and quantum mechanics, Lecture Notes in Mathematics, No. 52, Springer-Verlag, Berlin-New York, 1968. MR 0232579
- Birgit Speh and David A. Vogan Jr., Reducibility of generalized principal series representations, Acta Math. 145 (1980), no. 3-4, 227–299. MR 590291, DOI https://doi.org/10.1007/BF02414191
- David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR 632407
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 22E45
Retrieve articles in all journals with MSC (2010): 22E45
Additional Information
Alessandra Pantano
Affiliation:
Department of Mathematics, University of California at Irvine, Irvine, California 92697
Email:
apantano@math.uci.edu
Annegret Paul
Affiliation:
Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008
Email:
annegret.paul@wmich.edu
Susana A. Salamanca-Riba
Affiliation:
Department of Mathematics, New Mexico State University, Las Cruces, New Mexico 88003
Email:
ssalaman@nmsu.edu
Received by editor(s):
May 26, 2009
Published electronically:
February 15, 2010
Additional Notes:
This research was supported by NSF grants DMS 0554278 and DMS 0201944.
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.