Some homological properties of the category $\mathcal {O}$, II
HTML articles powered by AMS MathViewer
- by Volodymyr Mazorchuk
- Represent. Theory 14 (2010), 249-263
- DOI: https://doi.org/10.1090/S1088-4165-10-00368-7
- Published electronically: March 1, 2010
- PDF | Request permission
Abstract:
We show, in full generality, that Lusztig’s $\mathbf {a}$-function describes the projective dimension of both indecomposable tilting modules and indecomposable injective modules in the regular block of the BGG category $\mathcal {O}$, proving a conjecture from the first paper. On the way we show that the images of simple modules under projective functors can be represented in the derived category by linear complexes of tilting modules. These complexes, in turn, can be interpreted as the images of simple modules under projective functors in the Koszul dual of the category $\mathcal {O}$. Finally, we describe the dominant projective modules and also the projective-injective modules in some subcategories of $\mathcal {O}$ and show how one can use categorification to decompose the regular representation of the Weyl group into a direct sum of cell modules, extending the results known for the symmetric group (type $A$).References
- Henning Haahr Andersen and Catharina Stroppel, Twisting functors on $\scr O$, Represent. Theory 7 (2003), 681–699. MR 2032059, DOI 10.1090/S1088-4165-03-00189-4
- Alexandre Beĭlinson and Joseph Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, A certain category of ${\mathfrak {g}}$-modules, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 1–8 (Russian). MR 0407097
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
- J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), no. 3, 387–410. MR 632980, DOI 10.1007/BF01389272
- J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra II: Koszulity, preprint arXiv:0806.3472; to appear in Transf. Groups.
- Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124, DOI 10.1017/CBO9780511629228
- James E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\scr {O}$, Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. MR 2428237, DOI 10.1090/gsm/094
- Ronald S. Irving, Projective modules in the category ${\scr O}_S$: self-duality, Trans. Amer. Math. Soc. 291 (1985), no. 2, 701–732. MR 800259, DOI 10.1090/S0002-9947-1985-0800259-9
- Ronald S. Irving, Projective modules in the category ${\scr O}_S$: Loewy series, Trans. Amer. Math. Soc. 291 (1985), no. 2, 733–754. MR 800260, DOI 10.1090/S0002-9947-1985-0800260-5
- Ronald S. Irving and Brad Shelton, Loewy series and simple projective modules in the category ${\scr O}_S$, Pacific J. Math. 132 (1988), no. 2, 319–342. MR 934173, DOI 10.2140/pjm.1988.132.319
- A. Joseph, Kostant’s problem, Goldie rank and the Gel′fand-Kirillov conjecture, Invent. Math. 56 (1980), no. 3, 191–213. MR 561970, DOI 10.1007/BF01390044
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- Oleksandr Khomenko and Volodymyr Mazorchuk, On Arkhipov’s and Enright’s functors, Math. Z. 249 (2005), no. 2, 357–386. MR 2115448, DOI 10.1007/s00209-004-0702-8
- Mikhail Khovanov, Volodymyr Mazorchuk, and Catharina Stroppel, A categorification of integral Specht modules, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1163–1169. MR 2367090, DOI 10.1090/S0002-9939-07-09124-1
- Steffen König, Inger Heidi Slungård, and Changchang Xi, Double centralizer properties, dominant dimension, and tilting modules, J. Algebra 240 (2001), no. 1, 393–412. MR 1830559, DOI 10.1006/jabr.2000.8726
- J. Kåhrström, Kostant’s problem and parabolic subgroups, Glasgow Math. J. 52 (2010), 19–32.
- J. Kåhrström, V. Mazorchuk, A new approach to Kostant’s problem, preprint arXiv:0712.3117; to appear in Algebra and Number Theory.
- George Lusztig, Cells in affine Weyl groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 255–287. MR 803338, DOI 10.2969/aspm/00610255
- George Lusztig, Cells in affine Weyl groups. II, J. Algebra 109 (1987), no. 2, 536–548. MR 902967, DOI 10.1016/0021-8693(87)90154-2
- Andrew Mathas, On the left cell representations of Iwahori-Hecke algebras of finite Coxeter groups, J. London Math. Soc. (2) 54 (1996), no. 3, 475–488. MR 1413892, DOI 10.1112/jlms/54.3.475
- V. Mazorchuk, Applications of the category of linear complexes of tilting modules associated with the category $\mathcal {O}$, Alg. Rep. Theory 12 (2009), no. 6, 489–512.
- Volodymyr Mazorchuk, Some homological properties of the category $\scr O$, Pacific J. Math. 232 (2007), no. 2, 313–341. MR 2366357, DOI 10.2140/pjm.2007.232.313
- Volodymyr Mazorchuk, A twisted approach to Kostant’s problem, Glasg. Math. J. 47 (2005), no. 3, 549–561. MR 2202066, DOI 10.1017/S0017089505002776
- Volodymyr Mazorchuk and Serge Ovsienko, Finitistic dimension of properly stratified algebras, Adv. Math. 186 (2004), no. 1, 251–265. MR 2065514, DOI 10.1016/j.aim.2003.08.001
- Volodymyr Mazorchuk and Serge Ovsienko, A pairing in homology and the category of linear complexes of tilting modules for a quasi-hereditary algebra, J. Math. Kyoto Univ. 45 (2005), no. 4, 711–741. With an appendix by Catharina Stroppel. MR 2226627, DOI 10.1215/kjm/1250281654
- Volodymyr Mazorchuk, Serge Ovsienko, and Catharina Stroppel, Quadratic duals, Koszul dual functors, and applications, Trans. Amer. Math. Soc. 361 (2009), no. 3, 1129–1172. MR 2457393, DOI 10.1090/S0002-9947-08-04539-X
- Volodymyr Mazorchuk and Catharina Stroppel, On functors associated to a simple root, J. Algebra 314 (2007), no. 1, 97–128. MR 2331754, DOI 10.1016/j.jalgebra.2007.03.015
- Volodymyr Mazorchuk and Catharina Stroppel, Categorification of Wedderburn’s basis for $\Bbb C[S_n]$, Arch. Math. (Basel) 91 (2008), no. 1, 1–11. MR 2420892, DOI 10.1007/s00013-008-2571-6
- Volodymyr Mazorchuk and Catharina Stroppel, Categorification of (induced) cell modules and the rough structure of generalised Verma modules, Adv. Math. 219 (2008), no. 4, 1363–1426. MR 2450613, DOI 10.1016/j.aim.2008.06.019
- Volodymyr Mazorchuk and Catharina Stroppel, Projective-injective modules, Serre functors and symmetric algebras, J. Reine Angew. Math. 616 (2008), 131–165. MR 2369489, DOI 10.1515/CRELLE.2008.020
- Max Neunhöffer, Kazhdan-Lusztig basis, Wedderburn decomposition, and Lusztig’s homomorphism for Iwahori-Hecke algebras, J. Algebra 303 (2006), no. 1, 430–446. MR 2253671, DOI 10.1016/j.jalgebra.2006.04.005
- Alvany Rocha-Caridi, Splitting criteria for ${\mathfrak {g}}$-modules induced from a parabolic and the Berňsteĭn-Gel′fand-Gel′fand resolution of a finite-dimensional, irreducible ${\mathfrak {g}}$-module, Trans. Amer. Math. Soc. 262 (1980), no. 2, 335–366. MR 586721, DOI 10.1090/S0002-9947-1980-0586721-0
- Steen Ryom-Hansen, Koszul duality of translation- and Zuckerman functors, J. Lie Theory 14 (2004), no. 1, 151–163. MR 2040174
- Wolfgang Soergel, Kategorie $\scr O$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), no. 2, 421–445 (German, with English summary). MR 1029692, DOI 10.1090/S0894-0347-1990-1029692-5
- Wolfgang Soergel, Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln, Represent. Theory 1 (1997), 37–68 (German, with English summary). MR 1445511, DOI 10.1090/S1088-4165-97-00006-X
- Catharina Stroppel, Category ${\scr O}$: gradings and translation functors, J. Algebra 268 (2003), no. 1, 301–326. MR 2005290, DOI 10.1016/S0021-8693(03)00308-9
Bibliographic Information
- Volodymyr Mazorchuk
- Affiliation: Department of Mathematics, Uppsala University, SE-751 06, Uppsala, Sweden
- MR Author ID: 353912
- Email: mazor@math.uu.se
- Received by editor(s): September 15, 2009
- Received by editor(s) in revised form: October 3, 2009
- Published electronically: March 1, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 14 (2010), 249-263
- MSC (2000): Primary 16E10, 16E30, 16G99, 17B10
- DOI: https://doi.org/10.1090/S1088-4165-10-00368-7
- MathSciNet review: 2602033