## Hall polynomials for affine quivers

HTML articles powered by AMS MathViewer

- by Andrew Hubery
- Represent. Theory
**14**(2010), 355-378 - DOI: https://doi.org/10.1090/S1088-4165-10-00374-2
- Published electronically: April 30, 2010
- PDF | Request permission

## Abstract:

We use Green’s comultiplication formula to prove that Hall polynomials exist for all Dynkin and affine quivers. For Dynkin and cyclic quivers this approach provides a new and simple proof of the existence of Hall polynomials. For non-cyclic affine quivers these polynomials are defined with respect to the decomposition classes of Bongartz and Dudek, a generalisation of the Segre classes for square matrices.## References

- V. I. Arnol′d,
*On matrices depending on parameters*, Uspehi Mat. Nauk**26**(1971), no. 2(158), 101–114 (Russian). MR**0301242** - Maurice Auslander, Idun Reiten, and Sverre O. Smalø,
*Representation theory of Artin algebras*, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original. MR**1476671** - Pierre Baumann and Christian Kassel,
*The Hall algebra of the category of coherent sheaves on the projective line*, J. Reine Angew. Math.**533**(2001), 207–233. MR**1823869**, DOI 10.1515/crll.2001.031 - Klaus Bongartz and Dirk Dudek,
*Decomposition classes for representations of tame quivers*, J. Algebra**240**(2001), no. 1, 268–288. MR**1830554**, DOI 10.1006/jabr.2000.8705 - Philippe Caldero and Frédéric Chapoton,
*Cluster algebras as Hall algebras of quiver representations*, Comment. Math. Helv.**81**(2006), no. 3, 595–616. MR**2250855**, DOI 10.4171/CMH/65 - Philippe Caldero and Markus Reineke,
*On the quiver Grassmannian in the acyclic case*, J. Pure Appl. Algebra**212**(2008), no. 11, 2369–2380. MR**2440252**, DOI 10.1016/j.jpaa.2008.03.025 - William Crawley-Boevey,
*Exceptional sequences of representations of quivers*, Proceedings of the Sixth International Conference on Representations of Algebras (Ottawa, ON, 1992) Carleton-Ottawa Math. Lecture Note Ser., vol. 14, Carleton Univ., Ottawa, ON, 1992, pp. 7. MR**1206935** - Bangming Deng and Jie Xiao,
*A new approach to Kac’s theorem on representations of valued quivers*, Math. Z.**245**(2003), no. 1, 183–199. MR**2023959**, DOI 10.1007/s00209-003-0541-z - Vlastimil Dlab and Claus Michael Ringel,
*Indecomposable representations of graphs and algebras*, Mem. Amer. Math. Soc.**6**(1976), no. 173, v+57. MR**447344**, DOI 10.1090/memo/0173 - Peter Gabriel,
*Unzerlegbare Darstellungen. I*, Manuscripta Math.**6**(1972), 71–103; correction, ibid. 6 (1972), 309 (German, with English summary). MR**332887**, DOI 10.1007/BF01298413 - C. G. Gibson,
*Regularity of the Segre stratification*, Math. Proc. Cambridge Philos. Soc.**80**(1976), no. 1, 91–97. MR**414928**, DOI 10.1017/S0305004100052701 - James A. Green,
*Hall algebras, hereditary algebras and quantum groups*, Invent. Math.**120**(1995), no. 2, 361–377. MR**1329046**, DOI 10.1007/BF01241133 - V. G. Kac,
*Infinite root systems, representations of graphs and invariant theory*, Invent. Math.**56**(1980), no. 1, 57–92. MR**557581**, DOI 10.1007/BF01403155 - Victor G. Kac,
*Infinite-dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990. MR**1104219**, DOI 10.1017/CBO9780511626234 - Andrew Hubery,
*Symmetric functions and the centre of the Ringel-Hall algebra of a cyclic quiver*, Math. Z.**251**(2005), no. 3, 705–719. MR**2190352**, DOI 10.1007/s00209-005-0830-9 - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR**1354144** - Markus Reineke,
*Counting rational points of quiver moduli*, Int. Math. Res. Not. , posted on (2006), Art. ID 70456, 19. MR**2250021**, DOI 10.1155/IMRN/2006/70456 - Christine Riedtmann,
*Lie algebras generated by indecomposables*, J. Algebra**170**(1994), no. 2, 526–546. MR**1302854**, DOI 10.1006/jabr.1994.1351 - Claus Michael Ringel,
*Hall algebras and quantum groups*, Invent. Math.**101**(1990), no. 3, 583–591. MR**1062796**, DOI 10.1007/BF01231516 - Claus Michael Ringel,
*Hall polynomials for the representation-finite hereditary algebras*, Adv. Math.**84**(1990), no. 2, 137–178. MR**1080975**, DOI 10.1016/0001-8708(90)90043-M - Claus Michael Ringel,
*The composition algebra of a cyclic quiver. Towards an explicit description of the quantum group of type $\~A_n$*, Proc. London Math. Soc. (3)**66**(1993), no. 3, 507–537. MR**1207546**, DOI 10.1112/plms/s3-66.3.507 - Claus Michael Ringel,
*Green’s theorem on Hall algebras*, Representation theory of algebras and related topics (Mexico City, 1994) CMS Conf. Proc., vol. 19, Amer. Math. Soc., Providence, RI, 1996, pp. 185–245. MR**1388564** - Claus Michael Ringel,
*Exceptional objects in hereditary categories*, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat.**4**(1996), no. 2, 150–158. Representation theory of groups, algebras, and orders (Constanţa, 1995). MR**1428463** - Bert Sevenhant and Michel Van Den Bergh,
*A relation between a conjecture of Kac and the structure of the Hall algebra*, J. Pure Appl. Algebra**160**(2001), no. 2-3, 319–332. MR**1836006**, DOI 10.1016/S0022-4049(00)00078-5 - Csaba Szántó,
*Hall numbers and the composition algebra of the Kronecker algebra*, Algebr. Represent. Theory**9**(2006), no. 5, 465–495. MR**2252656**, DOI 10.1007/s10468-006-9019-0

## Bibliographic Information

**Andrew Hubery**- Affiliation: Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
- Email: a.w.hubery@leeds.ac.uk
- Received by editor(s): October 8, 2007
- Published electronically: April 30, 2010
- © Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory
**14**(2010), 355-378 - MSC (2010): Primary 16G20
- DOI: https://doi.org/10.1090/S1088-4165-10-00374-2
- MathSciNet review: 2644456