## On decomposition numbers with Jantzen filtration of cyclotomic $q$-Schur algebras

HTML articles powered by AMS MathViewer

- by Kentaro Wada PDF
- Represent. Theory
**14**(2010), 417-434 Request permission

## Abstract:

Let $\mathscr {S}(\varLambda )$ be the cyclotomic $q$-Schur algebra associated to the Ariki-Koike algebra $\mathscr {H}_{n,r}$, introduced by Dipper, James and Mathas. In this paper, we consider $v$-decomposition numbers of $\mathscr {S}(\varLambda )$, namely decomposition numbers with respect to the Jantzen filtrations of Weyl modules. We prove, as a $v$-analogue of the result obtained by Shoji and Wada, a product formula for $v$-decomposition numbers of $\mathscr {S}(\varLambda )$, which asserts that certain $v$-decomposition numbers are expressed as a product of $v$-decomposition numbers for various cyclotomic $q$-Schur algebras associated to Ariki-koike algebras $\mathscr {H}_{n_i,r_i}$ of smaller rank. Moreover, we prove a similar formula for $v$-decomposition numbers of $\mathscr {H}_{n,r}$ by using a Schur functor.## References

- Susumu Ariki,
*On the decomposition numbers of the Hecke algebra of $G(m,1,n)$*, J. Math. Kyoto Univ.**36**(1996), no.Β 4, 789β808. MR**1443748**, DOI 10.1215/kjm/1250518452 - Susumu Ariki,
*On the classification of simple modules for cyclotomic Hecke algebras of type $G(m,1,n)$ and Kleshchev multipartitions*, Osaka J. Math.**38**(2001), no.Β 4, 827β837. MR**1864465** - Susumu Ariki and Andrew Mathas,
*The number of simple modules of the Hecke algebras of type $G(r,1,n)$*, Math. Z.**233**(2000), no.Β 3, 601β623. MR**1750939**, DOI 10.1007/s002090050489 - Richard Dipper, Gordon James, and Andrew Mathas,
*Cyclotomic $q$-Schur algebras*, Math. Z.**229**(1998), no.Β 3, 385β416. MR**1658581**, DOI 10.1007/PL00004665 - Jie Du and Hebing Rui,
*Based algebras and standard bases for quasi-hereditary algebras*, Trans. Amer. Math. Soc.**350**(1998), no.Β 8, 3207β3235. MR**1603902**, DOI 10.1090/S0002-9947-98-02305-8 - J. J. Graham and G. I. Lehrer,
*Cellular algebras*, Invent. Math.**123**(1996), no.Β 1, 1β34. MR**1376244**, DOI 10.1007/BF01232365 - Nicolas Jacon,
*An algorithm for the computation of the decomposition matrices for Ariki-Koike algebras*, J. Algebra**292**(2005), no.Β 1, 100β109. MR**2166797**, DOI 10.1016/j.jalgebra.2004.10.017 - Gordon James and Andrew Mathas,
*The Jantzen sum formula for cyclotomic $q$-Schur algebras*, Trans. Amer. Math. Soc.**352**(2000), no.Β 11, 5381β5404. MR**1665333**, DOI 10.1090/S0002-9947-00-02492-2 - Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon,
*Hecke algebras at roots of unity and crystal bases of quantum affine algebras*, Comm. Math. Phys.**181**(1996), no.Β 1, 205β263. MR**1410572**, DOI 10.1007/BF02101678 - Bernard Leclerc and Jean-Yves Thibon,
*Canonical bases of $q$-deformed Fock spaces*, Internat. Math. Res. Notices**9**(1996), 447β456. MR**1399410**, DOI 10.1155/S1073792896000293 - Andrew Mathas,
*Simple modules of Ariki-Koike algebras*, Group representations: cohomology, group actions and topology (Seattle, WA, 1996) Proc. Sympos. Pure Math., vol. 63, Amer. Math. Soc., Providence, RI, 1998, pp.Β 383β396. MR**1603195**, DOI 10.1090/pspum/063/1603195 - Andrew Mathas,
*Iwahori-Hecke algebras and Schur algebras of the symmetric group*, University Lecture Series, vol. 15, American Mathematical Society, Providence, RI, 1999. MR**1711316**, DOI 10.1090/ulect/015 - Andrew Mathas,
*The representation theory of the Ariki-Koike and cyclotomic $q$-Schur algebras*, Representation theory of algebraic groups and quantum groups, Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Tokyo, 2004, pp.Β 261β320. MR**2074597**, DOI 10.2969/aspm/04010261 - T. Shoji and K. Wada. Cyclotomic $q$-Schur algebras associated to the Ariki-Koike algebra,
*Represent. Theory***14**(2010), 379-416. - Denis Uglov,
*Canonical bases of higher-level $q$-deformed Fock spaces and Kazhdan-Lusztig polynomials*, Physical combinatorics (Kyoto, 1999) Progr. Math., vol. 191, BirkhΓ€user Boston, Boston, MA, 2000, pp.Β 249β299. MR**1768086** - Michela Varagnolo and Eric Vasserot,
*On the decomposition matrices of the quantized Schur algebra*, Duke Math. J.**100**(1999), no.Β 2, 267β297. MR**1722955**, DOI 10.1215/S0012-7094-99-10010-X - Xavier Yvonne,
*A conjecture for $q$-decomposition matrices of cyclotomic $v$-Schur algebras*, J. Algebra**304**(2006), no.Β 1, 419β456. MR**2256400**, DOI 10.1016/j.jalgebra.2006.03.048

## Additional Information

**Kentaro Wada**- Affiliation: Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- Address at time of publication: Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
- Email: wada@kurims.kyoto-u.ac.jp
- Received by editor(s): November 6, 2007
- Published electronically: May 18, 2010
- © Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory
**14**(2010), 417-434 - MSC (2010): Primary 20-XX, 16-XX
- DOI: https://doi.org/10.1090/S1088-4165-2010-00376-3
- MathSciNet review: 2652073