Tropical R maps and affine geometric crystals
HTML articles powered by AMS MathViewer
- by Masaki Kashiwara, Toshiki Nakashima and Masato Okado
- Represent. Theory 14 (2010), 446-509
- DOI: https://doi.org/10.1090/S1088-4165-2010-00379-9
- Published electronically: July 7, 2010
- PDF | Request permission
Abstract:
By modifying an earlier method of the authors (2008), certain affine geometric crystals are realized in affinization of the fundamental representation $W(\varpi _1)_l$, and the tropical R maps for the affine geometric crystals are described explicitly. We also define prehomogeneous geometric crystals and show that for a positive geometric crystal, the connectedness of the corresponding ultra-discretized crystal is the sufficient condition for prehomogeneity of the positive geometric crystal. Moreover, the uniqueness of tropical R maps is discussed.References
- Arkady Berenstein and David Kazhdan, Geometric and unipotent crystals, Geom. Funct. Anal. Special Volume (2000), 188–236. GAFA 2000 (Tel Aviv, 1999). MR 1826254, DOI 10.1007/978-3-0346-0422-2_{8}
- V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
- V. G. Drinfel′d, On some unsolved problems in quantum group theory, Quantum groups (Leningrad, 1990) Lecture Notes in Math., vol. 1510, Springer, Berlin, 1992, pp. 1–8. MR 1183474, DOI 10.1007/BFb0101175
- G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada, Scattering rules in soliton cellular automata associated with crystal bases, Recent developments in infinite-dimensional Lie algebras and conformal field theory (Charlottesville, VA, 2000) Contemp. Math., vol. 297, Amer. Math. Soc., Providence, RI, 2002, pp. 151–182. MR 1919817, DOI 10.1090/conm/297/05097
- Michio Jimbo, A $q$-difference analogue of $U({\mathfrak {g}})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69. MR 797001, DOI 10.1007/BF00704588
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Seok-Jin Kang, Masaki Kashiwara, and Kailash C. Misra, Crystal bases of Verma modules for quantum affine Lie algebras, Compositio Math. 92 (1994), no. 3, 299–325. MR 1286129
- Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Affine crystals and vertex models, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 449–484. MR 1187560, DOI 10.1142/s0217751x92003896
- Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Perfect crystals of quantum affine Lie algebras, Duke Math. J. 68 (1992), no. 3, 499–607. MR 1194953, DOI 10.1215/S0012-7094-92-06821-9
- Masaki Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), no. 1, 117–175. MR 1890649, DOI 10.1215/S0012-9074-02-11214-9
- Masaki Kashiwara, Level zero fundamental representations over quantized affine algebras and Demazure modules, Publ. Res. Inst. Math. Sci. 41 (2005), no. 1, 223–250. MR 2115972, DOI 10.2977/prims/1145475409
- Atsuo Kuniba, Kailash C. Misra, Masato Okado, Taichiro Takagi, and Jun Uchiyama, Crystals for Demazure modules of classical affine Lie algebras, J. Algebra 208 (1998), no. 1, 185–215. MR 1643999, DOI 10.1006/jabr.1998.7503
- Masaki Kashiwara, Toshiki Nakashima, and Masato Okado, Affine geometric crystals and limit of perfect crystals, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3645–3686. MR 2386241, DOI 10.1090/S0002-9947-08-04341-9
- A. Kuniba, M. Okado, T. Takagi, and Y. Yamada, Geometric crystal and tropical $R$ for $D^{(1)}_n$, Int. Math. Res. Not. 48 (2003), 2565–2620. MR 2013509, DOI 10.1155/S1073792803209041
- Toshiki Nakashima, Geometric crystals on Schubert varieties, J. Geom. Phys. 53 (2005), no. 2, 197–225. MR 2110832, DOI 10.1016/j.geomphys.2004.06.004
- Toshiki Nakashima, Geometric crystals on unipotent groups and generalized Young tableaux, J. Algebra 293 (2005), no. 1, 65–88. MR 2173966, DOI 10.1016/j.jalgebra.2005.07.025
- Dale H. Peterson and Victor G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 6, i, 1778–1782. MR 699439, DOI 10.1073/pnas.80.6.1778
- Yasuhiko Yamada, A birational representation of Weyl group, combinatorial $R$-matrix and discrete Toda equation, Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, pp. 305–319. MR 1872262, DOI 10.1142/9789812810007_{0}014
Bibliographic Information
- Masaki Kashiwara
- Affiliation: Research Institute for Mathematical Sciences, Kyoto University, Kitashiwakawa, Sakyo-ku, Kyoto 606, Japan
- MR Author ID: 98845
- Email: masaki@kurims.kyoto-u.ac.jp
- Toshiki Nakashima
- Affiliation: Department of Mathematics, Sophia University, Kioicho 7-1, Chiyoda-ku, Tokyo 102-8554, Japan
- Email: toshiki@mm.sophia.ac.jp
- Masato Okado
- Affiliation: Department of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Email: okado@sigmath.es.osaka-u.ac.jp
- Received by editor(s): September 2, 2008
- Published electronically: July 7, 2010
- Additional Notes: This work was supported in part by JSPS Grants in Aid for Scientific Research, numbers 18340007(M.K.), 19540050(T.N.), 20540016(M.O.)
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 14 (2010), 446-509
- MSC (2010): Primary 17B37, 17B67; Secondary 22E65, 14M15
- DOI: https://doi.org/10.1090/S1088-4165-2010-00379-9
- MathSciNet review: 2661518