Skip to Main Content

Representation Theory

Published by the American Mathematical Society since 1997, this electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.71.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Generic Hecke algebras for monomial groups
HTML articles powered by AMS MathViewer

by S. I. Alhaddad and J. Matthew Douglass
Represent. Theory 14 (2010), 688-712
DOI: https://doi.org/10.1090/S1088-4165-2010-00394-5
Published electronically: November 15, 2010

Abstract:

In this paper we define a two-variable, generic Hecke algebra, $\mathcal H$, for each complex reflection group $G(b,1,n)$. The algebra $\mathcal H$ specializes to the group algebra of $G(b,1,n)$ and also to an endomorphism algebra of a representation of $\operatorname {GL}_n(\mathbb F_q)$ induced from a solvable subgroup. We construct Kazhdan-Lusztig “$R$-polynomials” for $\mathcal {H}$ and show that they may be used to define a partial order on $G(b,1,n)$. Using a generalization of Deodhar’s notion of distinguished subexpressions we give a closed formula for the $R$-polynomials. After passing to a one-variable quotient of the ring of scalars, we construct Kazhdan-Lusztig polynomials for $\mathcal H$ that reduce to the usual Kazhdan-Lusztig polynomials for the symmetric group when $b=1$.
References
  • N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
  • Michel Broué and Gunter Malle, Zyklotomische Heckealgebren, Astérisque 212 (1993), 119–189 (German). Représentations unipotentes génériques et blocs des groupes réductifs finis. MR 1235834
  • Michel Broué, Gunter Malle, and Jean Michel, Generic blocks of finite reductive groups, Astérisque 212 (1993), 7–92. Représentations unipotentes génériques et blocs des groupes réductifs finis. MR 1235832
  • Michel Broué and Jean Michel, Blocs à groupes de défaut abéliens des groupes réductifs finis, Astérisque 212 (1993), 93–117 (French). Représentations unipotentes génériques et blocs des groupes réductifs finis. MR 1235833
  • Marc Cabanes and Michel Enguehard, Representation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR 2057756, DOI 10.1017/CBO9780511542763
  • Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
  • Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. II, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 892316
  • Vinay V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), no. 2, 187–198. MR 435249, DOI 10.1007/BF01390109
  • Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), no. 3, 499–511. MR 782232, DOI 10.1007/BF01388520
  • Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483–506. MR 916182, DOI 10.1016/0021-8693(87)90232-8
  • Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
  • J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI 10.1007/BF01232365
  • David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
  • George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
  • G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442, DOI 10.1090/crmm/018
  • Takeo Yokonuma, Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A344–A347 (French). MR 218467
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 20C08, 20F55
  • Retrieve articles in all journals with MSC (2010): 20C08, 20F55
Bibliographic Information
  • S. I. Alhaddad
  • Affiliation: Department of Mathematics, University of South Carolina, Lancaster, Lancaster, South Carolina 29721
  • Email: alhaddad@gwm.sc.edu
  • J. Matthew Douglass
  • Affiliation: Department of Mathematics, University of North Texas, 1155 Union Circle #311430, Denton, Texas 76203-5017
  • Email: douglass@unt.edu
  • Received by editor(s): October 8, 2007
  • Received by editor(s) in revised form: September 17, 2010, and September 25, 2010
  • Published electronically: November 15, 2010
  • Additional Notes: The authors would like to thank Nathaniel Thiem for helpful discussions.
  • © Copyright 2010 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Represent. Theory 14 (2010), 688-712
  • MSC (2010): Primary 20C08; Secondary 20F55
  • DOI: https://doi.org/10.1090/S1088-4165-2010-00394-5
  • MathSciNet review: 2738584