Automorphisms of complex reflection groups
HTML articles powered by AMS MathViewer
- by I. Marin and J. Michel
- Represent. Theory 14 (2010), 747-788
- DOI: https://doi.org/10.1090/S1088-4165-2010-00380-5
- Published electronically: December 14, 2010
- PDF | Request permission
Abstract:
Let $G\subset \mathrm {GL}(\mathbb {C}^r)$ be a finite complex reflection group. We show that when $G$ is irreducible, apart from the exception $G=\mathfrak {S}_6$, as well as for a large class of non-irreducible groups, any automorphism of $G$ is the product of a central automorphism and of an automorphism which preserves the reflections. We show further that an automorphism which preserves the reflections is the product of an element of $N_{\mathrm {GL}(\mathbb {C}^r)}(G)$ and of a “Galois” automorphism: we show that $\mathrm {Gal}(K/\mathbb {Q})$, where $K$ is the field of definition of $G$, injects into the group of outer automorphisms of $G$, and that this injection can be chosen such that it induces the usual Galois action on characters of $G$, apart from a few exceptional characters; further, replacing $K$ if needed by an extension of degree $2$, the injection can be lifted to $\mathrm {Aut}(G)$, and every irreducible representation admits a model which is equivariant with respect to this lifting. Along the way we show that the fundamental invariants of $G$ can be chosen rational.References
- Susumu Ariki, Representation theory of a Hecke algebra of $G(r,p,n)$, J. Algebra 177 (1995), no. 1, 164–185. MR 1356366, DOI 10.1006/jabr.1995.1292
- Susumu Ariki and Kazuhiko Koike, A Hecke algebra of $(\textbf {Z}/r\textbf {Z})\wr {\mathfrak {S}}_n$ and construction of its irreducible representations, Adv. Math. 106 (1994), no. 2, 216–243. MR 1279219, DOI 10.1006/aima.1994.1057
- Mark Benard, Schur indices and splitting fields of the unitary reflection groups, J. Algebra 38 (1976), no. 2, 318–342. MR 401901, DOI 10.1016/0021-8693(76)90223-4
- D. J. Benson, Polynomial invariants of finite groups, London Mathematical Society Lecture Note Series, vol. 190, Cambridge University Press, Cambridge, 1993. MR 1249931, DOI 10.1017/CBO9780511565809
- David Bessis, Sur le corps de définition d’un groupe de réflexions complexe, Comm. Algebra 25 (1997), no. 8, 2703–2716 (French). MR 1459587, DOI 10.1080/00927879708826016
- David Bessis, Zariski theorems and diagrams for braid groups, Invent. Math. 145 (2001), no. 3, 487–507. MR 1856398, DOI 10.1007/s002220100155
- David Bessis and Jean Michel, Explicit presentations for exceptional braid groups, Experiment. Math. 13 (2004), no. 3, 257–266. MR 2103323, DOI 10.1080/10586458.2004.10504537
- N. Bourbaki, “Algèbre”, Chap. V, “Corps commutatifs”, Hermann, Paris, 1950.
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- M. Broué, G. Malle, and J. Michel, Towards spetses. I, Transform. Groups 4 (1999), no. 2-3, 157–218. Dedicated to the memory of Claude Chevalley. MR 1712862, DOI 10.1007/BF01237357
- Michel Broué, Gunter Malle, and Raphaël Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127–190. MR 1637497
- See www.math.jussieu.fr/˜jmichel/chevie.
- Arjeh M. Cohen, Finite complex reflection groups, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 3, 379–436. MR 422448, DOI 10.24033/asens.1313
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Ivan Marin, Sur les représentations de Krammer génériques, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 6, 1883–1925 (French, with English and French summaries). MR 2377890, DOI 10.5802/aif.2317
- I. Marin, “Branching properties for the groups $G(de,e,r)$”, J. Algebra 323 (2010), 966–982.
- Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488, DOI 10.1007/978-3-662-02772-1
- E. W. Read, On the finite imprimitive unitary reflection groups, J. Algebra 45 (1977), no. 2, 439–452. MR 442074, DOI 10.1016/0021-8693(77)90336-2
- Derek John Scott Robinson, A course in the theory of groups, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York-Berlin, 1982. MR 648604, DOI 10.1007/978-1-4684-0128-8
- Jean-Pierre Serre, Corps locaux, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968 (French). Deuxième édition. MR 0354618
- Andrey V. Zelevinsky, Representations of finite classical groups, Lecture Notes in Mathematics, vol. 869, Springer-Verlag, Berlin-New York, 1981. A Hopf algebra approach. MR 643482, DOI 10.1007/BFb0090287
Bibliographic Information
- I. Marin
- Affiliation: Institut de Mathématiques de Jussieu, Université Paris VII, 175, rue du Chevaleret, 75013 Paris
- MR Author ID: 664485
- Email: marin@math.jussieu.fr
- J. Michel
- Affiliation: Institut de Mathématiques de Jussieu, Université Paris VII, 175, rue du Chevaleret, 75013 Paris
- MR Author ID: 189248
- Email: jmichel@math.jussieu.fr
- Received by editor(s): April 8, 2009
- Received by editor(s) in revised form: February 1, 2010
- Published electronically: December 14, 2010
- Additional Notes: I. Marin benefited from the ANR Grant ANR-09-JCJC-0102-01
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 14 (2010), 747-788
- MSC (2010): Primary 20F55, 20F28, 20C15
- DOI: https://doi.org/10.1090/S1088-4165-2010-00380-5
- MathSciNet review: 2746138