Skip to Main Content

Representation Theory

Published by the American Mathematical Society, the Representation Theory (ERT) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.7.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the Fourier inversion formula for the full modular group
HTML articles powered by AMS MathViewer

by Keith R. Ouellette PDF
Represent. Theory 15 (2011), 112-125 Request permission

Abstract:

We offer a new proof of the Fourier inversion and Plancherel formulae for Maass-Eisenstein wave packets. The proof uses truncation, basic analysis, and classical Fourier theory. Brief sketches of the proofs due to Langlands, Lapid, and Casselman are then presented for comparison.
References
  • James G. Arthur, A (very brief) history of the trace formula, A note on http://www.claymath.org/cw/arthur/pdf/HistoryTraceFormula.pdf, 2007.
  • Armand Borel, Automorphic forms on $\textrm {SL}_2(\textbf {R})$, Cambridge Tracts in Mathematics, vol. 130, Cambridge University Press, Cambridge, 1997. MR 1482800, DOI 10.1017/CBO9780511896064
  • Robert S. Doran, Ze-Li Dou, and George T. Gilbert (eds.), Automorphic forms, automorphic representations, and arithmetic, Proceedings of Symposia in Pure Mathematics, vol. 66, American Mathematical Society, Providence, RI, 1999. MR 1703754
  • Gerald B. Folland, Real analysis, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. Modern techniques and their applications; A Wiley-Interscience Publication. MR 1681462
  • Tomio Kubota, Elementary theory of Eisenstein series, Kodansha, Ltd., Tokyo; Halsted Press [John Wiley & Sons, Inc.], New York-London-Sydney, 1973. MR 0429749
  • R. P. Langlands, Eisenstein series, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 235–252. MR 0249539
  • Erez Lapid, On Arthur’s asymptotic inner product formula of truncated Eisenstein series, to appear in Clay Mathematics Proceedings.
  • Hans Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141–183 (German). MR 31519, DOI 10.1007/BF01329622
  • Colette Mœglin and Jean-Loup Waldspurger, Décomposition spectrale et séries d’Eisenstein, Progress in Mathematics, vol. 113, Birkhäuser Verlag, Basel, 1994 (French, with English summary). Une paraphrase de l’Écriture. [A paraphrase of Scripture]. MR 1261867
  • W. Roelcke, Analytische Fortsetzung der Eisensteinreihen zu den parabolischen Spitzen von Grenzkreisgruppen erster Art, Math. Ann. 132 (1956), 121–129 (German). MR 82562, DOI 10.1007/BF01452322
  • Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
  • A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
  • Atle Selberg, Discontinuous groups and harmonic analysis, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 177–189. MR 0176097
  • V. S. Varadarajan, An introduction to harmonic analysis on semisimple Lie groups, Cambridge Studies in Advanced Mathematics, vol. 16, Cambridge University Press, Cambridge, 1999. Corrected reprint of the 1989 original. MR 1725738
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 22E45, 11F72
  • Retrieve articles in all journals with MSC (2010): 22E45, 11F72
Additional Information
  • Keith R. Ouellette
  • Affiliation: Department of Mathematics, College of the Holy Cross, Worcester, Massachusetts 01610
  • Email: kouellet@holycross.edu
  • Received by editor(s): October 21, 2006
  • Received by editor(s) in revised form: December 10, 2010
  • Published electronically: February 7, 2011
  • © Copyright 2011 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Represent. Theory 15 (2011), 112-125
  • MSC (2010): Primary 22E45; Secondary 11F72
  • DOI: https://doi.org/10.1090/S1088-4165-2011-00400-3
  • MathSciNet review: 2772585