Highest weight categories arising from Khovanov’s diagram algebra III: category $\mathcal {O}$
HTML articles powered by AMS MathViewer
- by Jonathan Brundan and Catharina Stroppel
- Represent. Theory 15 (2011), 170-243
- DOI: https://doi.org/10.1090/S1088-4165-2011-00389-7
- Published electronically: March 7, 2011
- PDF | Request permission
Abstract:
We prove that integral blocks of parabolic category $\mathcal {O}$ associated to the subalgebra $\mathfrak {gl}_m(\mathbb {C}) \oplus \mathfrak {gl}_n(\mathbb {C})$ of $\mathfrak {gl}_{m+n}(\mathbb {C})$ are Morita equivalent to quasi-hereditary covers of generalised Khovanov algebras. Although this result is in principle known, the existing proof is quite indirect, going via perverse sheaves on Grassmannians. Our new approach is completely algebraic, exploiting Schur-Weyl duality for higher levels. As a by-product we get a concrete combinatorial construction of $2$-Kac-Moody representations in the sense of Rouquier corresponding to level two weights in finite type $A$.References
- Tomoyuki Arakawa and Takeshi Suzuki, Duality between $\mathfrak {s}\mathfrak {l}_n(\textbf {C})$ and the degenerate affine Hecke algebra, J. Algebra 209 (1998), no. 1, 288–304. MR 1652134, DOI 10.1006/jabr.1998.7530
- Erik Backelin, Koszul duality for parabolic and singular category $\scr O$, Represent. Theory 3 (1999), 139–152. MR 1703324, DOI 10.1090/S1088-4165-99-00055-2
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0
- Joseph Bernstein, Igor Frenkel, and Mikhail Khovanov, A categorification of the Temperley-Lieb algebra and Schur quotients of $U(\mathfrak {sl}_2)$ via projective and Zuckerman functors, Selecta Math. (N.S.) 5 (1999), no. 2, 199–241. MR 1714141, DOI 10.1007/s000290050047
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- Brian D. Boe and Daniel K. Nakano, Representation type of the blocks of category ${\scr O}_S$, Adv. Math. 196 (2005), no. 1, 193–256. MR 2159299, DOI 10.1016/j.aim.2004.09.001
- Tom Braden, Perverse sheaves on Grassmannians, Canad. J. Math. 54 (2002), no. 3, 493–532. MR 1900761, DOI 10.4153/CJM-2002-017-6
- Francesco Brenti, Kazhdan-Lusztig and $R$-polynomials, Young’s lattice, and Dyck partitions, Pacific J. Math. 207 (2002), no. 2, 257–286. MR 1972246, DOI 10.2140/pjm.2002.207.257
- Jonathan Brundan, Dual canonical bases and Kazhdan-Lusztig polynomials, J. Algebra 306 (2006), no. 1, 17–46. MR 2271570, DOI 10.1016/j.jalgebra.2006.01.053
- Jonathan Brundan, Centers of degenerate cyclotomic Hecke algebras and parabolic category $\scr O$, Represent. Theory 12 (2008), 236–259. MR 2424964, DOI 10.1090/S1088-4165-08-00333-6
- Jonathan Brundan and Alexander Kleshchev, Representations of shifted Yangians and finite $W$-algebras, Mem. Amer. Math. Soc. 196 (2008), no. 918, viii+107. MR 2456464, DOI 10.1090/memo/0918
- Jonathan Brundan and Alexander Kleshchev, Schur-Weyl duality for higher levels, Selecta Math. (N.S.) 14 (2008), no. 1, 1–57. MR 2480709, DOI 10.1007/s00029-008-0059-7
- Jonathan Brundan and Alexander Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451–484. MR 2551762, DOI 10.1007/s00222-009-0204-8
- Jonathan Brundan and Alexander Kleshchev, The degenerate analogue of Ariki’s categorification theorem, Math. Z. 266 (2010), no. 4, 877–919. MR 2729296, DOI 10.1007/s00209-009-0603-y
- Jonathan Brundan and Alexander Kleshchev, Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math. 222 (2009), no. 6, 1883–1942. MR 2562768, DOI 10.1016/j.aim.2009.06.018
- J. Brundan, A. Kleshchev and W. Wang, Graded Specht modules, to appear in J. Reine Angew. Math.; arXiv:0901.0218.
- J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra I: cellularity; arXiv:0806.1532.
- Jonathan Brundan and Catharina Stroppel, Highest weight categories arising from Khovanov’s diagram algebra. II. Koszulity, Transform. Groups 15 (2010), no. 1, 1–45. MR 2600694, DOI 10.1007/s00031-010-9079-4
- Y. Chen, Categorification of level two representations of quantum $\mathfrak {sl}_n$ via generalized arc rings; arXiv:math/0611012.
- Y. Chen and M. Khovanov, An invariant of tangle cobordisms via subquotients of arc rings; arXiv:math/0610054.
- Shun-Jen Cheng, Weiqiang Wang, and R. B. Zhang, Super duality and Kazhdan-Lusztig polynomials, Trans. Amer. Math. Soc. 360 (2008), no. 11, 5883–5924. MR 2425696, DOI 10.1090/S0002-9947-08-04447-4
- Joseph Chuang and Raphaël Rouquier, Derived equivalences for symmetric groups and $\mathfrak {sl}_2$-categorification, Ann. of Math. (2) 167 (2008), no. 1, 245–298. MR 2373155, DOI 10.4007/annals.2008.167.245
- E. Cline, B. Parshall, and L. Scott, Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85–99. MR 961165
- V. G. Drinfel′d, Degenerate affine Hecke algebras and Yangians, Funktsional. Anal. i Prilozhen. 20 (1986), no. 1, 69–70 (Russian). MR 831053
- Jie Du, $\textrm {IC}$ bases and quantum linear groups, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 135–148. MR 1278732, DOI 10.1090/pspum/056.2/1278732
- Thomas J. Enright and Brad Shelton, Categories of highest weight modules: applications to classical Hermitian symmetric pairs, Mem. Amer. Math. Soc. 67 (1987), no. 367, iv+94. MR 888703, DOI 10.1090/memo/0367
- Igor B. Frenkel and Mikhail G. Khovanov, Canonical bases in tensor products and graphical calculus for $U_q({\mathfrak {s}}{\mathfrak {l}}_2)$, Duke Math. J. 87 (1997), no. 3, 409–480. MR 1446615, DOI 10.1215/S0012-7094-97-08715-9
- Igor Frenkel, Mikhail Khovanov, and Catharina Stroppel, A categorification of finite-dimensional irreducible representations of quantum $\mathfrak {sl}_2$ and their tensor products, Selecta Math. (N.S.) 12 (2006), no. 3-4, 379–431. MR 2305608, DOI 10.1007/s00029-007-0031-y
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821, DOI 10.24033/bsmf.1583
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI 10.1007/BF01232365
- Jun Hu and Andrew Mathas, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type $A$, Adv. Math. 225 (2010), no. 2, 598–642. MR 2671176, DOI 10.1016/j.aim.2010.03.002
- Ruth Stella Huerfano and Mikhail Khovanov, Categorification of some level two representations of quantum $\mathfrak {sl}_n$, J. Knot Theory Ramifications 15 (2006), no. 6, 695–713. MR 2253831, DOI 10.1142/S0218216506004713
- James E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\scr {O}$, Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. MR 2428237, DOI 10.1090/gsm/094
- Ronald S. Irving, Projective modules in the category ${\scr O}_S$: self-duality, Trans. Amer. Math. Soc. 291 (1985), no. 2, 701–732. MR 800259, DOI 10.1090/S0002-9947-1985-0800259-9
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426. MR 1740682, DOI 10.1215/S0012-7094-00-10131-7
- Mikhail Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002), 665–741. MR 1928174, DOI 10.2140/agt.2002.2.665
- Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309–347. MR 2525917, DOI 10.1090/S1088-4165-09-00346-X
- Alexander Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005. MR 2165457, DOI 10.1017/CBO9780511542800
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Kazhdan & Lusztig pour les grassmanniennes, Young tableaux and Schur functors in algebra and geometry (Toruń, 1980), Astérisque, vol. 87, Soc. Math. France, Paris, 1981, pp. 249–266 (French). MR 646823
- Bernard Leclerc and Hyohe Miyachi, Constructible characters and canonical bases, J. Algebra 277 (2004), no. 1, 298–317. MR 2059632, DOI 10.1016/j.jalgebra.2004.02.023
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Volodymyr Mazorchuk and Catharina Stroppel, A combinatorial approach to functorial quantum $\mathfrak {sl}_k$ knot invariants, Amer. J. Math. 131 (2009), no. 6, 1679–1713. MR 2567504, DOI 10.1353/ajm.0.0082
- Hitoshi Murakami, Tomotada Ohtsuki, and Shuji Yamada, Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. (2) 44 (1998), no. 3-4, 325–360. MR 1659228
- John G. Nagel and Marcos Moshinsky, Operators that lower or raise the irreducible vector spaces of $\textrm {U}_{n-1}$ contained in an irreducible vector space of $\textrm {U}_{n}$, J. Mathematical Phys. 6 (1965), 682–694. MR 186188, DOI 10.1063/1.1704326
- R. Rouquier, $2$-Kac-Moody algebras; arXiv:0812.5023.
- Catharina Stroppel, Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors, Duke Math. J. 126 (2005), no. 3, 547–596. MR 2120117, DOI 10.1215/S0012-7094-04-12634-X
- C. Stroppel, TQFT with corners and tilting functors in the Kac-Moody case; arXiv:math/0605103.
- Catharina Stroppel, Parabolic category $\scr O$, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology, Compos. Math. 145 (2009), no. 4, 954–992. MR 2521250, DOI 10.1112/S0010437X09004035
- C. Stroppel and B. Webster, 2-block Springer fibers: convolution algebras, coherent sheaves and embedded TQFT, to appear in Comm. Math. Helv.; arXiv:0802.1943.
- J. Sussan, Category $\mathcal {O}$ and $\mathfrak {sl}(k)$ link invariants; arXiv:math/0701045.
- M. Varagnolo and E. Vasserot, Canonical bases and Khovanov-Lauda algebras; arXiv:0901.3992.
Bibliographic Information
- Jonathan Brundan
- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
- Email: brundan@uoregon.edu
- Catharina Stroppel
- Affiliation: Department of Mathematics, University of Bonn, 53115 Bonn, Germany
- Email: stroppel@math.uni-bonn.de
- Received by editor(s): July 15, 2009
- Received by editor(s) in revised form: June 22, 2010, and June 26, 2010
- Published electronically: March 7, 2011
- Additional Notes: The first author was supported in part by NSF grant no. DMS-0654147
The second author was supported by the NSF and the Minerva Research Foundation DMS-0635607. - © Copyright 2011 American Mathematical Society
- Journal: Represent. Theory 15 (2011), 170-243
- MSC (2010): Primary 17B10, 16S37
- DOI: https://doi.org/10.1090/S1088-4165-2011-00389-7
- MathSciNet review: 2781018