Integral homology of loop groups via Langlands dual groups
HTML articles powered by AMS MathViewer
- by Zhiwei Yun and Xinwen Zhu
- Represent. Theory 15 (2011), 347-369
- DOI: https://doi.org/10.1090/S1088-4165-2011-00399-X
- Published electronically: April 20, 2011
- PDF | Request permission
Abstract:
Let $K$ be a connected compact Lie group, and $G$ its complexification. The homology of the based loop group $\Omega K$ with integer coefficients is naturally a $\mathbb {Z}$-Hopf algebra. After possibly inverting $2$ or $3$, we identify $H_*(\Omega K,\mathbb {Z})$ with the Hopf algebra of algebraic functions on $B^\vee _e$, where $B^\vee$ is a Borel subgroup of the Langlands dual group scheme $G^\vee$ of $G$ and $B^\vee _e$ is the centralizer in $B^\vee$ of a regular nilpotent element $e\in \operatorname {Lie} B^\vee$. We also give a similar interpretation for the equivariant homology of $\Omega K$ under the maximal torus action.References
- Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207 (French). MR 51508, DOI 10.2307/1969728
- Armand Borel, Commutative subgroups and torsion in compact Lie groups, Bull. Amer. Math. Soc. 66 (1960), 285–288. MR 0117299, DOI 10.1090/S0002-9904-1960-10474-0
- Raoul Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35–61. MR 102803
- Ginzburg, V. Perverse sheaves on a Loop group and Langlands’ duality. arXiv:math/9511007.
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Sharad V. Keny, Existence of regular nilpotent elements in the Lie algebra of a simple algebraic group in bad characteristics, J. Algebra 108 (1987), no. 1, 195–201. MR 887203, DOI 10.1016/0021-8693(87)90133-5
- Bertram Kostant and Shrawan Kumar, The nil Hecke ring and cohomology of $G/P$ for a Kac-Moody group $G$, Adv. in Math. 62 (1986), no. 3, 187–237. MR 866159, DOI 10.1016/0001-8708(86)90101-5
- Shrawan Kumar, M. S. Narasimhan, and A. Ramanathan, Infinite Grassmannians and moduli spaces of $G$-bundles, Math. Ann. 300 (1994), no. 1, 41–75. MR 1289830, DOI 10.1007/BF01450475
- George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143. MR 2342692, DOI 10.4007/annals.2007.166.95
- Bao Châu Ngô, Fibration de Hitchin et endoscopie, Invent. Math. 164 (2006), no. 2, 399–453 (French, with English summary). MR 2218781, DOI 10.1007/s00222-005-0483-7
- Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
- Neantro Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265, Springer-Verlag, Berlin-New York, 1972 (French). MR 0338002
- Christoph Sorger, Lectures on moduli of principal $G$-bundles over algebraic curves, School on Algebraic Geometry (Trieste, 1999) ICTP Lect. Notes, vol. 1, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2000, pp. 1–57. MR 1795860
- T. A. Springer, Some arithmetical results on semi-simple Lie algebras, Inst. Hautes Études Sci. Publ. Math. 30 (1966), 115–141. MR 206171, DOI 10.1007/BF02684358
Bibliographic Information
- Zhiwei Yun
- Affiliation: Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
- Address at time of publication: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- MR Author ID: 862829
- Email: zyun@math.mit.edu
- Xinwen Zhu
- Affiliation: Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138
- MR Author ID: 868127
- Email: xinwenz@math.harvard.edu
- Received by editor(s): September 29, 2009
- Received by editor(s) in revised form: October 24, 2010
- Published electronically: April 20, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 15 (2011), 347-369
- MSC (2010): Primary 57T10, 20G07
- DOI: https://doi.org/10.1090/S1088-4165-2011-00399-X
- MathSciNet review: 2788897