Quotients of representation rings
HTML articles powered by AMS MathViewer
- by Hans Wenzl
- Represent. Theory 15 (2011), 385-406
- DOI: https://doi.org/10.1090/S1088-4165-2011-00401-5
- Published electronically: May 3, 2011
- PDF | Request permission
Abstract:
We give a proof using so-called fusion rings and $q$-deformations of Brauer algebras that the representation ring of an orthogonal or symplectic group can be obtained as a quotient of a ring $Gr(O(\infty ))$. This is obtained here as a limiting case for analogous quotient maps for fusion categories, with the level going to $\infty$. This in turn allows a detailed description of the quotient map in terms of a reflection group. As an application, one obtains a general description of the branching rules for the restriction of representations of $Gl(N)$ to $O(N)$ and $Sp(N)$ as well as detailed information about the structure of the $q$-Brauer algebras in the nonsemisimple case for certain specializations.References
- Henning Haahr Andersen, Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1992), no. 1, 149–159. MR 1182414, DOI 10.1007/BF02096627
- Henning Haahr Andersen and Jan Paradowski, Fusion categories arising from semisimple Lie algebras, Comm. Math. Phys. 169 (1995), no. 3, 563–588. MR 1328736, DOI 10.1007/BF02099312
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974. MR 0417223, DOI 10.1007/978-1-4684-9913-1
- Christian Blanchet, Hecke algebras, modular categories and $3$-manifolds quantum invariants, Topology 39 (2000), no. 1, 193–223. MR 1710999, DOI 10.1016/S0040-9383(98)00066-4
- Anna Beliakova and Christian Blanchet, Modular categories of types $B$, $C$ and $D$, Comment. Math. Helv. 76 (2001), no. 3, 467–500. MR 1854694, DOI 10.1007/PL00000385
- Brauer, R., On algebras which are connected with the semisimple continuous groups, Ann. of Math. 63 (1937), 854-872.
- Pierre Deligne, La série exceptionnelle de groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 4, 321–326 (French, with English and French summaries). MR 1378507
- Thomas J. Enright and Jeb F. Willenbring, Hilbert series, Howe duality and branching for classical groups, Ann. of Math. (2) 159 (2004), no. 1, 337–375. MR 2052357, DOI 10.4007/annals.2004.159.337
- Cox, A., De Visscher, M., Martin, P., Alcove geometry and a translation principle for the Brauer algebra. arXiv:0807.3892
- Philippe Di Francesco, Pierre Mathieu, and David Sénéchal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997. MR 1424041, DOI 10.1007/978-1-4612-2256-9
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI 10.1007/BF01232365
- Frederick M. Goodman and Holly Hauschild Mosley, Cyclotomic Birman-Wenzl-Murakami algebras. I. Freeness and realization as tangle algebras, J. Knot Theory Ramifications 18 (2009), no. 8, 1089–1127. MR 2554337, DOI 10.1142/S0218216509007397
- Frederick M. Goodman and Hans Wenzl, A path algorithm for affine Kazhdan-Lusztig polynomials, Math. Z. 237 (2001), no. 2, 235–249. MR 1838309, DOI 10.1007/PL00004866
- Hu, J., BMW algebra, quantized coordinate algebra and type $C$ Schur-Weyl duality, Representation Theory 15 (2011), 1–62.
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6 (1993), no. 4, 905–947, 949–1011. MR 1186962, DOI 10.1090/S0894-0347-1993-99999-X
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Victor G. Kac and Dale H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), no. 2, 125–264. MR 750341, DOI 10.1016/0001-8708(84)90032-X
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145, DOI 10.1007/978-1-4612-0783-2
- R. C. King, Modification rules and products of irreducible representations of the unitary, orthogonal, and symplectic groups, J. Mathematical Phys. 12 (1971), 1588–1598. MR 287816, DOI 10.1063/1.1665778
- Kazuhiko Koike and Itaru Terada, Young-diagrammatic methods for the representation theory of the classical groups of type $B_n,\;C_n,\;D_n$, J. Algebra 107 (1987), no. 2, 466–511. MR 885807, DOI 10.1016/0021-8693(87)90099-8
- Robert Leduc and Arun Ram, A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: the Brauer, Birman-Wenzl, and type A Iwahori-Hecke algebras, Adv. Math. 125 (1997), no. 1, 1–94. MR 1427801, DOI 10.1006/aima.1997.1602
- D. E. Littlewood, On invariant theory under restricted groups, Philos. Trans. Roy. Soc. London Ser. A 239 (1944), 387–417. MR 12299, DOI 10.1098/rsta.1944.0003
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Martin, P., The decomposition matrices of the Brauer algebra over the complex field. arXiv:0908.1500
- Morrison, S., Peters, E., Snyder, N., Knot polynomial identities and quantum group coincidences, arXiv:1003.0022
- Arun Ram, A “second orthogonality relation” for characters of Brauer algebras, European J. Combin. 18 (1997), no. 6, 685–706. MR 1468338, DOI 10.1006/eujc.1996.0132
- Arun Ram and Hans Wenzl, Matrix units for centralizer algebras, J. Algebra 145 (1992), no. 2, 378–395. MR 1144939, DOI 10.1016/0021-8693(92)90109-Y
- Wolfgang Soergel, Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules, Represent. Theory 1 (1997), 83–114. MR 1444322, DOI 10.1090/S1088-4165-97-00021-6
- Wolfgang Soergel, Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren, Represent. Theory 1 (1997), 115–132. MR 1445716, DOI 10.1090/S1088-4165-97-00017-4
- Sheila Sundaram, Tableaux in the representation theory of the classical Lie groups, Invariant theory and tableaux (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 19, Springer, New York, 1990, pp. 191–225. MR 1035496
- Imre Tuba and Hans Wenzl, On braided tensor categories of type $BCD$, J. Reine Angew. Math. 581 (2005), 31–69. MR 2132671, DOI 10.1515/crll.2005.2005.581.31
- V. G. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), no. 3, 527–553. MR 939474, DOI 10.1007/BF01393746
- Turaev, V., Quantum invariants, DeGruyter.
- V. Turaev and H. Wenzl, Quantum invariants of $3$-manifolds associated with classical simple Lie algebras, Internat. J. Math. 4 (1993), no. 2, 323–358. MR 1217386, DOI 10.1142/S0129167X93000170
- Vladimir Turaev and Hans Wenzl, Semisimple and modular categories from link invariants, Math. Ann. 309 (1997), no. 3, 411–461. MR 1474200, DOI 10.1007/s002080050120
- Antony Wassermann, Operator algebras and conformal field theory. III. Fusion of positive energy representations of $\textrm {LSU}(N)$ using bounded operators, Invent. Math. 133 (1998), no. 3, 467–538. MR 1645078, DOI 10.1007/s002220050253
- Hans Wenzl, Hecke algebras of type $A_n$ and subfactors, Invent. Math. 92 (1988), no. 2, 349–383. MR 936086, DOI 10.1007/BF01404457
- Hans Wenzl, Quantum groups and subfactors of type $B$, $C$, and $D$, Comm. Math. Phys. 133 (1990), no. 2, 383–432. MR 1090432, DOI 10.1007/BF02097374
- Hans Wenzl, On the structure of Brauer’s centralizer algebras, Ann. of Math. (2) 128 (1988), no. 1, 173–193. MR 951511, DOI 10.2307/1971466
- Hans Wenzl, Braids and invariants of $3$-manifolds, Invent. Math. 114 (1993), no. 2, 235–275. MR 1240638, DOI 10.1007/BF01232670
- Hans Wenzl, $C^*$ tensor categories from quantum groups, J. Amer. Math. Soc. 11 (1998), no. 2, 261–282. MR 1470857, DOI 10.1090/S0894-0347-98-00253-7
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
- Changchang Xi, On the quasi-heredity of Birman-Wenzl algebras, Adv. Math. 154 (2000), no. 2, 280–298. MR 1784677, DOI 10.1006/aima.2000.1919
Bibliographic Information
- Hans Wenzl
- Affiliation: Department of Mathematics, University of California San Diego, La Jolla California 92093-0112
- MR Author ID: 239252
- Email: hwenzl@ucsd.edu
- Received by editor(s): December 11, 2006
- Received by editor(s) in revised form: January 11, 2011
- Published electronically: May 3, 2011
- Additional Notes: This work was partially supported by NSF grant DMS 0302437
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 15 (2011), 385-406
- MSC (2010): Primary 22E46
- DOI: https://doi.org/10.1090/S1088-4165-2011-00401-5
- MathSciNet review: 2801174