On the computability of some positive-depth supercuspidal characters near the identity
HTML articles powered by AMS MathViewer
- by Raf Cluckers, Clifton Cunningham, Julia Gordon and Loren Spice;
- Represent. Theory 15 (2011), 531-567
- DOI: https://doi.org/10.1090/S1088-4165-2011-00403-9
- Published electronically: July 7, 2011
Abstract:
This paper is concerned with the values of Harish-Chandra characters of a class of positive-depth, toral, very supercuspidal representations of $p$-adic symplectic and special orthogonal groups, near the identity element. We declare two representations equivalent if their characters coincide on a specific neighbourhood of the identity (which is larger than the neighbourhood on which the Harish-Chandra local character expansion holds). We construct a parameter space $B$ (that depends on the group and a real number $r>0$) for the set of equivalence classes of the representations of minimal depth $r$ satisfying some additional assumptions. This parameter space is essentially a geometric object defined over $\mathbb {Q}$. Given a non-Archimedean local field $\mathbb {K}$ with sufficiently large residual characteristic, the part of the character table near the identity element for $G(\mathbb {K})$ that comes from our class of representations is parameterized by the residue-field points of $B$. The character values themselves can be recovered by specialization from a constructible motivic exponential function, in the terminology of Cluckers and Loeser in a recent paper. The values of such functions are algorithmically computable. It is in this sense that we show that a large part of the character table of the group $G(\mathbb {K})$ is computable.References
- Jeffrey D. Adler, Refined anisotropic $K$-types and supercuspidal representations, Pacific J. Math. 185 (1998), no. 1, 1–32. MR 1653184, DOI 10.2140/pjm.1998.185.1
- Jeffrey D. Adler and Alan Roche, An intertwining result for $p$-adic groups, Canad. J. Math. 52 (2000), no. 3, 449–467. MR 1758228, DOI 10.4153/CJM-2000-021-8
- Jeffrey D. Adler and Stephen DeBacker, Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive $p$-adic group, Michigan Math. J. 50 (2002), no. 2, 263–286. MR 1914065, DOI 10.1307/mmj/1028575734
- Jeffrey D. Adler and Stephen DeBacker, Murnaghan-Kirillov theory for supercuspidal representations of tame general linear groups, J. Reine Angew. Math. 575 (2004), 1–35. MR 2097545, DOI 10.1515/crll.2004.080
- Jeffrey D. Adler and Jonathan Korman, The local character expansion near a tame, semisimple element, Amer. J. Math. 129 (2007), no. 2, 381–403. MR 2306039, DOI 10.1353/ajm.2007.0005
- Jeffrey D. Adler and Loren Spice, Supercuspidal characters of reductive $p$-adic groups, Amer. J. Math. 131 (2009), no. 4, 1137–1210. MR 2543925, DOI 10.1353/ajm.0.0060
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923, DOI 10.1007/BF02715544
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- Raf Cluckers and François Loeser, Ax-Kochen-Eršov theorems for $p$-adic integrals and motivic integration, Geometric methods in algebra and number theory, Progr. Math., vol. 235, Birkhäuser Boston, Boston, MA, 2005, pp. 109–137. MR 2159379, DOI 10.1007/0-8176-4417-2_{5}
- Raf Cluckers and François Loeser, Constructible exponential functions, motivic Fourier transform and transfer principle, Ann. of Math. (2) 171 (2010), no. 2, 1011–1065. MR 2630060, DOI 10.4007/annals.2010.171.1011
- Raf Cluckers and François Loeser, Constructible motivic functions and motivic integration, Invent. Math. 173 (2008), no. 1, 23–121. MR 2403394, DOI 10.1007/s00222-008-0114-1
- Raf Cluckers, Thomas Hales, and François Loeser, Transfer principle for the Fundamental Lemma, available at arXiv:0712.0708. To appear.
- Lawrence Corwin, Allen Moy, and Paul J. Sally Jr., Supercuspidal character formulas for $\textrm {GL}_l$, Representation theory and harmonic analysis (Cincinnati, OH, 1994) Contemp. Math., vol. 191, Amer. Math. Soc., Providence, RI, 1995, pp. 1–11. MR 1365530, DOI 10.1090/conm/191/02321
- Clifton Cunningham and Thomas C. Hales, Good orbital integrals, Represent. Theory 8 (2004), 414–457. MR 2084489, DOI 10.1090/S1088-4165-04-00220-1
- Stephen DeBacker and Mark Reeder, Depth-zero supercuspidal $L$-packets and their stability, Ann. of Math. (2) 169 (2009), no. 3, 795–901. MR 2480618, DOI 10.4007/annals.2009.169.795
- Julia Gordon and Thomas C. Hales, Virtual transfer factors, Represent. Theory 7 (2003), 81–100. MR 1973368, DOI 10.1090/S1088-4165-03-00183-3
- Julia Gordon, Motivic nature of character values of depth-zero representations, Int. Math. Res. Not. 34 (2004), 1735–1760. MR 2057872, DOI 10.1155/S1073792804133382
- Julia Gordon, Motivic Haar measure on reductive groups, Canad. J. Math. 58 (2006), no. 1, 93–114. MR 2195593, DOI 10.4153/CJM-2006-005-2
- Julia Gordon and Yoav Yaffe, An overview of arithmetic motivic integration, Ottawa lectures on admissible representations of reductive $p$-adic groups, Fields Inst. Monogr., vol. 26, Amer. Math. Soc., Providence, RI, 2009, pp. 113–149. MR 2508723, DOI 10.1090/fim/026/05
- Jeffrey Hakim and Fiona Murnaghan, Distinguished tame supercuspidal representations, Int. Math. Res. Pap. IMRP 2 (2008), Art. ID rpn005, 166. MR 2431732
- Thomas C. Hales, Can $p$-adic integrals be computed?, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 313–329. MR 2058612
- Peter Ungar, The theorem of Coles on uniform distribution, Comm. Pure Appl. Math. 20 (1967), 609–618. MR 213307, DOI 10.1002/cpa.3160200308
- Thomas C. Hales, Hyperelliptic curves and harmonic analysis (why harmonic analysis on reductive $p$-adic groups is not elementary), Representation theory and analysis on homogeneous spaces (New Brunswick, NJ, 1993) Contemp. Math., vol. 177, Amer. Math. Soc., Providence, RI, 1994, pp. 137–169. MR 1303604, DOI 10.1090/conm/177/01921
- Harish-Chandra, Harmonic analysis on reductive $p$-adic groups, Lecture Notes in Mathematics, Vol. 162, Springer-Verlag, Berlin-New York, 1970. Notes by G. van Dijk. MR 414797, DOI 10.1007/BFb0061269
- Ehud Hrushovski and David Kazhdan, Integration in valued fields, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 261–405. MR 2263194, DOI 10.1007/978-0-8176-4532-8_{4}
- Noriaki Kawanaka, Shintani lifting and Gel′fand-Graev representations, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 147–163. MR 933357, DOI 10.1090/pspum/047.1/933357
- D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), no. 2, 129–168. MR 947819, DOI 10.1007/BF02787119
- Ju-Lee Kim and Fiona Murnaghan, K-types and $\Gamma$-asymptotic expansions, J. Reine Angew. Math. 592 (2006), 189–236. MR 2222734, DOI 10.1515/CRELLE.2006.027
- Ju-Lee Kim, Supercuspidal representations: an exhaustion theorem, J. Amer. Math. Soc. 20 (2007), no. 2, 273–320. MR 2276772, DOI 10.1090/S0894-0347-06-00544-3
- Ju-Lee Kim and Allen Moy, Involutions, classical groups, and buildings, J. Algebra 242 (2001), no. 2, 495–515. MR 1848956, DOI 10.1006/jabr.2001.8839
- Jonathan Korman, On the local constancy of characters, J. Lie Theory 15 (2005), no. 2, 561–573. MR 2147443
- Robert E. Kottwitz, Transfer factors for Lie algebras, Represent. Theory 3 (1999), 127–138. MR 1703328, DOI 10.1090/S1088-4165-99-00068-0
- Allen Moy and Gopal Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198, DOI 10.1007/BF01231566
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680, DOI 10.1007/BF02566411
- Fiona Murnaghan, Characters of supercuspidal representations of classical groups, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 1, 49–105. MR 1368705, DOI 10.24033/asens.1735
- Mark Reeder, Supercuspidal $L$-packets of positive depth and twisted Coxeter elements, J. Reine Angew. Math. 620 (2008), 1–33. MR 2427973, DOI 10.1515/CRELLE.2008.046
- Modèle de Whittaker et caractères de représentations, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1974) Lecture Notes in Math., Vol. 466, Springer, Berlin-New York, 1975, pp. 151–171 (French). MR 393355
- Tetsuya Takahashi, Formulas for tamely ramified supercuspidal characters of $\textrm {GL}_3$, Trans. Amer. Math. Soc. 355 (2003), no. 2, 567–591. MR 1932714, DOI 10.1090/S0002-9947-02-03099-4
- Tetsuya Takahashi, On some constants in the supercuspidal characters of $\textrm {GL}_l,\ l$ a prime $\not =p$, Trans. Amer. Math. Soc. 357 (2005), no. 6, 2509–2526. MR 2140448, DOI 10.1090/S0002-9947-04-03727-4
- Jean-Loup Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque 269 (2001), vi+449 (French, with English and French summaries). MR 1817880
- Yimu Yin, Special transformations in algebraically closed valued fields, Ann. Pure Appl. Logic 161 (2010), no. 12, 1541–1564. MR 2674050, DOI 10.1016/j.apal.2010.06.005
- Yimu Yin, Grothendieck homomorphisms in algebraically closed valued fields III: Fourier transform, available at arXiv:0903.1097. preprint.
- Yimu Yin, Integration in algebraically closed valued fields, Ann. Pure Appl. Logic 162 (2011), no. 5, 384–408., DOI 10.1016/j.apal.2010.12.001
- Jiu-Kang Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), no. 3, 579–622. MR 1824988, DOI 10.1090/S0894-0347-01-00363-0
Bibliographic Information
- Raf Cluckers
- Affiliation: Université Lille 1, Laboratoire Painlevé, CNRS - UMR 8524, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France, and, Katholieke Universiteit Leuven, Department of Mathematics, Celestijnenlaan 200B, B-3001 Leuven, Belgium
- Email: Raf.Cluckers@math.univ-lille1.fr
- Clifton Cunningham
- Affiliation: Department of Mathematics, University of Calgary
- Email: cunning@math.ucalgary.ca
- Julia Gordon
- Affiliation: Department of Mathematics, University of British Columbia
- Email: gor@math.ubc.ca
- Loren Spice
- Affiliation: Department of Mathematics, Texas Christian University
- MR Author ID: 752374
- Email: l.spice@tcu.edu
- Received by editor(s): April 19, 2009
- Received by editor(s) in revised form: January 29, 2010, and February 4, 2011
- Published electronically: July 7, 2011
- © Copyright 2011 by the authors
- Journal: Represent. Theory 15 (2011), 531-567
- MSC (2010): Primary 22E50, 03C98
- DOI: https://doi.org/10.1090/S1088-4165-2011-00403-9
- MathSciNet review: 2833466