## Semistable locus of a group compactification

HTML articles powered by AMS MathViewer

- by Xuhua He and Jason Starr PDF
- Represent. Theory
**15**(2011), 574-583 Request permission

## Abstract:

In this paper, we consider the diagonal action of a connected semisimple group of adjoint type on its wonderful compactification. We show that the semistable locus is a union of the $G$-stable pieces and we calculate the geometric quotient.## References

- Michel Brion and Shrawan Kumar,
*Frobenius splitting methods in geometry and representation theory*, Progress in Mathematics, vol. 231, Birkhäuser Boston, Inc., Boston, MA, 2005. MR**2107324**, DOI 10.1007/b137486 - Michel Brion and Patrick Polo,
*Large Schubert varieties*, Represent. Theory**4**(2000), 97–126. MR**1789463**, DOI 10.1090/S1088-4165-00-00069-8 - Corrado De Concini, Senthamarai Kannan, and Andrea Maffei,
*The quotient of a complete symmetric variety*, Mosc. Math. J.**8**(2008), no. 4, 667–696, 846 (English, with English and Russian summaries). MR**2499351**, DOI 10.17323/1609-4514-2008-8-4-667-696 - C. De Concini and C. Procesi,
*Complete symmetric varieties*, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1–44. MR**718125**, DOI 10.1007/BFb0063234 - C. De Concini and T. A. Springer,
*Compactification of symmetric varieties*, Transform. Groups**4**(1999), no. 2-3, 273–300. Dedicated to the memory of Claude Chevalley. MR**1712864**, DOI 10.1007/BF01237359 - Sam Evens and Jiang-Hua Lu,
*On the variety of Lagrangian subalgebras. II*, Ann. Sci. École Norm. Sup. (4)**39**(2006), no. 2, 347–379 (English, with English and French summaries). MR**2245536**, DOI 10.1016/j.ansens.2005.11.004 - Xuhua He,
*Unipotent variety in the group compactification*, Adv. Math.**203**(2006), no. 1, 109–131. MR**2231043**, DOI 10.1016/j.aim.2005.04.004 - Xuhua He,
*The $G$-stable pieces of the wonderful compactification*, Trans. Amer. Math. Soc.**359**(2007), no. 7, 3005–3024. MR**2299444**, DOI 10.1090/S0002-9947-07-04158-X - Xuhua He,
*Character sheaves on the semi-stable locus of a group compactification*, Adv. Math.**225**(2010), no. 6, 3258–3290. MR**2729008**, DOI 10.1016/j.aim.2010.06.002 - Xuhua He and Jesper Funch Thomsen,
*Closures of Steinberg fibers in twisted wonderful compactifications*, Transform. Groups**11**(2006), no. 3, 427–438. MR**2264461**, DOI 10.1007/s00031-005-1112-7 - G. Lusztig,
*Character sheaves on disconnected groups. I*, Represent. Theory**7**(2003), 374–403. MR**2017063**, DOI 10.1090/S1088-4165-03-00204-8 - G. Lusztig,
*Parabolic character sheaves. II*, Mosc. Math. J.**4**(2004), no. 4, 869–896, 981 (English, with English and Russian summaries). MR**2124170**, DOI 10.17323/1609-4514-2004-4-4-869-896 - D. Mumford, J. Fogarty, and F. Kirwan,
*Geometric invariant theory*, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR**1304906**, DOI 10.1007/978-3-642-57916-5 - R. W. Richardson,
*Affine coset spaces of reductive algebraic groups*, Bull. London Math. Soc.**9**(1977), no. 1, 38–41. MR**437549**, DOI 10.1112/blms/9.1.38 - C. S. Seshadri,
*Geometric reductivity over arbitrary base*, Advances in Math.**26**(1977), no. 3, 225–274. MR**466154**, DOI 10.1016/0001-8708(77)90041-X - T. A. Springer,
*Linear algebraic groups*, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR**1642713**, DOI 10.1007/978-0-8176-4840-4 - T. A. Springer,
*Twisted conjugacy in simply connected groups*, Transform. Groups**11**(2006), no. 3, 539–545. MR**2264465**, DOI 10.1007/s00031-005-1113-6 - Tonny A. Springer,
*Some results on compactifications of semisimple groups*, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1337–1348. MR**2275648** - Robert Steinberg,
*Regular elements of semisimple algebraic groups*, Inst. Hautes Études Sci. Publ. Math.**25**(1965), 49–80. MR**180554**, DOI 10.1007/BF02684397 - Robert Steinberg,
*Endomorphisms of linear algebraic groups*, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR**0230728** - Elisabetta Strickland,
*A vanishing theorem for group compactifications*, Math. Ann.**277**(1987), no. 1, 165–171. MR**884653**, DOI 10.1007/BF01457285

## Additional Information

**Xuhua He**- Affiliation: Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Email: maxhhe@ust.hk
**Jason Starr**- Affiliation: Department of Mathematics, Stony Brook University, Stony Brook, New York 11794
- Email: jstarr@math.sunysb.edu
- Received by editor(s): January 28, 2009
- Received by editor(s) in revised form: January 24, 2011
- Published electronically: August 2, 2011
- Additional Notes: The first author was partially supported by (USA) NSF grant DMS 0700589 (HK) RGC grant DAG08/09.SC03 and RGC grant 601409.

The second author was partially supported by an Alfred P. Sloan fellowship, NSF grant DMS-0553921 and NSF grant DMS-0758521. - © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory
**15**(2011), 574-583 - MSC (2010): Primary 14L30, 14L24
- DOI: https://doi.org/10.1090/S1088-4165-2011-00404-0
- MathSciNet review: 2833468