Semistable locus of a group compactification
HTML articles powered by AMS MathViewer
- by Xuhua He and Jason Starr PDF
- Represent. Theory 15 (2011), 574-583 Request permission
Abstract:
In this paper, we consider the diagonal action of a connected semisimple group of adjoint type on its wonderful compactification. We show that the semistable locus is a union of the $G$-stable pieces and we calculate the geometric quotient.References
- Michel Brion and Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, vol. 231, Birkhäuser Boston, Inc., Boston, MA, 2005. MR 2107324, DOI 10.1007/b137486
- Michel Brion and Patrick Polo, Large Schubert varieties, Represent. Theory 4 (2000), 97–126. MR 1789463, DOI 10.1090/S1088-4165-00-00069-8
- Corrado De Concini, Senthamarai Kannan, and Andrea Maffei, The quotient of a complete symmetric variety, Mosc. Math. J. 8 (2008), no. 4, 667–696, 846 (English, with English and Russian summaries). MR 2499351, DOI 10.17323/1609-4514-2008-8-4-667-696
- C. De Concini and C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1–44. MR 718125, DOI 10.1007/BFb0063234
- C. De Concini and T. A. Springer, Compactification of symmetric varieties, Transform. Groups 4 (1999), no. 2-3, 273–300. Dedicated to the memory of Claude Chevalley. MR 1712864, DOI 10.1007/BF01237359
- Sam Evens and Jiang-Hua Lu, On the variety of Lagrangian subalgebras. II, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 2, 347–379 (English, with English and French summaries). MR 2245536, DOI 10.1016/j.ansens.2005.11.004
- Xuhua He, Unipotent variety in the group compactification, Adv. Math. 203 (2006), no. 1, 109–131. MR 2231043, DOI 10.1016/j.aim.2005.04.004
- Xuhua He, The $G$-stable pieces of the wonderful compactification, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3005–3024. MR 2299444, DOI 10.1090/S0002-9947-07-04158-X
- Xuhua He, Character sheaves on the semi-stable locus of a group compactification, Adv. Math. 225 (2010), no. 6, 3258–3290. MR 2729008, DOI 10.1016/j.aim.2010.06.002
- Xuhua He and Jesper Funch Thomsen, Closures of Steinberg fibers in twisted wonderful compactifications, Transform. Groups 11 (2006), no. 3, 427–438. MR 2264461, DOI 10.1007/s00031-005-1112-7
- G. Lusztig, Character sheaves on disconnected groups. I, Represent. Theory 7 (2003), 374–403. MR 2017063, DOI 10.1090/S1088-4165-03-00204-8
- G. Lusztig, Parabolic character sheaves. II, Mosc. Math. J. 4 (2004), no. 4, 869–896, 981 (English, with English and Russian summaries). MR 2124170, DOI 10.17323/1609-4514-2004-4-4-869-896
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- R. W. Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc. 9 (1977), no. 1, 38–41. MR 437549, DOI 10.1112/blms/9.1.38
- C. S. Seshadri, Geometric reductivity over arbitrary base, Advances in Math. 26 (1977), no. 3, 225–274. MR 466154, DOI 10.1016/0001-8708(77)90041-X
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713, DOI 10.1007/978-0-8176-4840-4
- T. A. Springer, Twisted conjugacy in simply connected groups, Transform. Groups 11 (2006), no. 3, 539–545. MR 2264465, DOI 10.1007/s00031-005-1113-6
- Tonny A. Springer, Some results on compactifications of semisimple groups, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1337–1348. MR 2275648
- Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 180554, DOI 10.1007/BF02684397
- Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728
- Elisabetta Strickland, A vanishing theorem for group compactifications, Math. Ann. 277 (1987), no. 1, 165–171. MR 884653, DOI 10.1007/BF01457285
Additional Information
- Xuhua He
- Affiliation: Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Email: maxhhe@ust.hk
- Jason Starr
- Affiliation: Department of Mathematics, Stony Brook University, Stony Brook, New York 11794
- Email: jstarr@math.sunysb.edu
- Received by editor(s): January 28, 2009
- Received by editor(s) in revised form: January 24, 2011
- Published electronically: August 2, 2011
- Additional Notes: The first author was partially supported by (USA) NSF grant DMS 0700589 (HK) RGC grant DAG08/09.SC03 and RGC grant 601409.
The second author was partially supported by an Alfred P. Sloan fellowship, NSF grant DMS-0553921 and NSF grant DMS-0758521. - © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 15 (2011), 574-583
- MSC (2010): Primary 14L30, 14L24
- DOI: https://doi.org/10.1090/S1088-4165-2011-00404-0
- MathSciNet review: 2833468