Derivatives and asymptotics of Whittaker functions
HTML articles powered by AMS MathViewer
- by Nadir Matringe
- Represent. Theory 15 (2011), 646-669
- DOI: https://doi.org/10.1090/S1088-4165-2011-00397-6
- Published electronically: September 26, 2011
- PDF | Request permission
Abstract:
Let $F$ be a $p$-adic field and $G_n$ be one of the groups $GL(n,F)$, $GSO(2n-1,F)$, $GSp(2(n-1),F)$, or $GSO(2(n-1),F)$. Using the mirabolic subgroup or analogues of it, and related “derivative” functors, we give an asymptotic expansion of functions in the Whittaker model of generic representations of $G_n$, with respect to a minimal set of characters of subgroups of the maximal torus. Denoting by $Z_n$ the center of $G_n$ and by $N_n$ the unipotent radical of its standard Borel subgroup, we characterize generic representations occurring in $L^2(Z_nN_n\backslash G_n)$ in terms of these characters.
This is related to a conjecture of Lapid and Mao for general split groups, asserting that the generic representations occurring in $L^2(Z_nN_n\backslash G_n)$ are the generic discrete series; we prove it for the group $G_n$.
References
- Joseph N. Bernstein, $P$-invariant distributions on $\textrm {GL}(N)$ and the classification of unitary representations of $\textrm {GL}(N)$ (non-Archimedean case), Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 50–102. MR 748505, DOI 10.1007/BFb0073145
- I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group $GL(n,F),$ where $F$ is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70 (Russian). MR 0425030
- J. N. Bernstein and A.V. Zelevinsky, Induced representations of reductive p-adic groups, Ann. Sc. E.N.S., 1977.
- Colin J. Bushnell, Representations of reductive $p$-adic groups: localization of Hecke algebras and applications, J. London Math. Soc. (2) 63 (2001), no. 2, 364–386. MR 1810135, DOI 10.1017/S0024610700001885
- Colin J. Bushnell and Guy Henniart, On the derived subgroups of certain unipotent subgroups of reductive groups over infinite fields, Transform. Groups 7 (2002), no. 3, 211–230. MR 1923971, DOI 10.1007/s00031-002-0011-4
- W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, http://www.math.ubc.ca/$\sim$cass/research.html.
- W. Casselman and J. Shalika, The unramified principal series of $p$-adic groups. II. The Whittaker function, Compositio Math. 41 (1980), no. 2, 207–231. MR 581582
- J. W. Cogdell and I. I. Piatetski-Shapiro, Derivatives and L-functions for GL(n), to appear in The Heritage of B. Moishezon, IMCP.
- Patrick Delorme, Constant term of smooth $H_\psi$-spherical functions on a reductive $p$-adic group, Trans. Amer. Math. Soc. 362 (2010), no. 2, 933–955. MR 2551511, DOI 10.1090/S0002-9947-09-04925-3
- P. Delorme, Théorème de Paley-Wiener pour les fonctions de Whittaker sur un groupe réductif $p$-adique, Preprint.
- Hervé Jacquet, Generic representations, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Lecture Notes in Math., Vol. 587, Springer, Berlin, 1977, pp. 91–101. MR 0499005
- Erez Lapid and Zhengyu Mao, On the asymptotics of Whittaker functions, Represent. Theory 13 (2009), 63–81. MR 2495561, DOI 10.1090/S1088-4165-09-00343-4
- Nadir Matringe, Distinction of some induced representations, Math. Res. Lett. 17 (2010), no. 1, 77–97. MR 2592729, DOI 10.4310/MRL.2010.v17.n1.a7
- François Rodier, Modèle de Whittaker des représentations admissibles des groupes réductifs $p$-adiques déployés, C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A1045–A1048 (French). MR 315053
- A.V. Zelevinsky, Induced representations of reductive p-adic groups II, Ann. Sc. E.N.S., 1980.
Bibliographic Information
- Nadir Matringe
- Affiliation: School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
- Address at time of publication: Laboratoire de Mathématiques et Applications, Université de Poitiers, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962, Futuroscope Chasseneuil Cedex, France
- Email: Nadir.Matringe@math.univ-poitiers.fr
- Received by editor(s): April 7, 2010
- Received by editor(s) in revised form: September 12, 2010, and October 6, 2010
- Published electronically: September 26, 2011
- Additional Notes: This work was supported by the EPSRC grant EP/G001480/1.
- © Copyright 2011 American Mathematical Society
- Journal: Represent. Theory 15 (2011), 646-669
- MSC (2010): Primary 22E50, 22E35
- DOI: https://doi.org/10.1090/S1088-4165-2011-00397-6
- MathSciNet review: 2833471