Theta correspondences for $\operatorname {GSp}(4)$
HTML articles powered by AMS MathViewer
- by Wee Teck Gan and Shuichiro Takeda PDF
- Represent. Theory 15 (2011), 670-718 Request permission
Abstract:
We explicitly determine the theta correspondences for $\operatorname {GSp}_4$ and orthogonal similitude groups associated to various quadratic spaces of rank $4$ and $6$. The results are needed in our proof of the local Langlands correspondence for $\operatorname {GSp}_4$.References
- Mahdi Asgari and Ralf Schmidt, On the adjoint $L$-function of the $p$-adic $\rm GSp(4)$, J. Number Theory 128 (2008), no. 8, 2340–2358. MR 2394824, DOI 10.1016/j.jnt.2007.08.012
- Wee Teck Gan and Nadya Gurevich, Nontempered A-packets of $G_2$: liftings from $\widetilde \textrm {SL}_2$, Amer. J. Math. 128 (2006), no. 5, 1105–1185. MR 2262172, DOI 10.1353/ajm.2006.0040
- W. T. Gan and S. Takeda, The local Langlands conjecture for $\operatorname {GSp}(4)$, to appear in Annals of Math.
- Wee Teck Gan and Shuichiro Takeda, On Shalika periods and a theorem of Jacquet-Martin, Amer. J. Math. 132 (2010), no. 2, 475–528. MR 2654780, DOI 10.1353/ajm.0.0109
- Stephen S. Kudla, On the local theta-correspondence, Invent. Math. 83 (1986), no. 2, 229–255. MR 818351, DOI 10.1007/BF01388961
- Stephen S. Kudla and Stephen Rallis, On first occurrence in the local theta correspondence, Automorphic representations, $L$-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, 2005, pp. 273–308. MR 2192827, DOI 10.1515/9783110892703.273
- Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Correspondances de Howe sur un corps $p$-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR 1041060, DOI 10.1007/BFb0082712
- Goran Muić and Gordan Savin, Symplectic-orthogonal theta lifts of generic discrete series, Duke Math. J. 101 (2000), no. 2, 317–333. MR 1738175, DOI 10.1215/S0012-7094-00-10128-7
- Dipendra Prasad, On the local Howe duality correspondence, Internat. Math. Res. Notices 11 (1993), 279–287. MR 1248702, DOI 10.1155/S1073792893000315
- S. Rallis, On the Howe duality conjecture, Compositio Math. 51 (1984), no. 3, 333–399. MR 743016
- Brooks Roberts, The theta correspondence for similitudes, Israel J. Math. 94 (1996), 285–317. MR 1394579, DOI 10.1007/BF02762709
- Brooks Roberts, The non-Archimedean theta correspondence for $\textrm {GSp}(2)$ and $\textrm {GO}(4)$, Trans. Amer. Math. Soc. 351 (1999), no. 2, 781–811. MR 1458334, DOI 10.1090/S0002-9947-99-02126-1
- Brooks Roberts and Ralf Schmidt, Local newforms for GSp(4), Lecture Notes in Mathematics, vol. 1918, Springer, Berlin, 2007. MR 2344630, DOI 10.1007/978-3-540-73324-9
- Paul J. Sally Jr. and Marko Tadić, Induced representations and classifications for $\textrm {GSp}(2,F)$ and $\textrm {Sp}(2,F)$, Mém. Soc. Math. France (N.S.) 52 (1993), 75–133 (English, with English and French summaries). MR 1212952
- J.-L. Waldspurger, Un exercice sur $\textrm {GSp}(4,F)$ et les représentations de Weil, Bull. Soc. Math. France 115 (1987), no. 1, 35–69 (French). MR 897614, DOI 10.24033/bsmf.2068
Additional Information
- Wee Teck Gan
- Affiliation: Mathematics Department, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
- MR Author ID: 621634
- Email: wgan@math.ucsd.edu
- Shuichiro Takeda
- Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
- MR Author ID: 873141
- Email: stakeda@math.purdue.edu
- Received by editor(s): June 15, 2010
- Received by editor(s) in revised form: March 10, 2011
- Published electronically: November 1, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 15 (2011), 670-718
- MSC (2010): Primary 11F27, 11S37, 11S99, 20G99, 22E50
- DOI: https://doi.org/10.1090/S1088-4165-2011-00405-2
- MathSciNet review: 2846304