On the classification of irreducible representations of affine Hecke algebras with unequal parameters
HTML articles powered by AMS MathViewer
- by Maarten Solleveld
- Represent. Theory 16 (2012), 1-87
- DOI: https://doi.org/10.1090/S1088-4165-2012-00406-X
- Published electronically: January 11, 2012
- PDF | Request permission
Abstract:
Let $\mathcal R$ be a root datum with affine Weyl group $W$, and let $\mathcal H = \mathcal H (\mathcal R,q)$ be an affine Hecke algebra with positive, possibly unequal, parameters $q$. Then $\mathcal H$ is a deformation of the group algebra $\mathbb {C} [W]$, so it is natural to compare the representation theory of $\mathcal H$ and of $W$.
We define a map from irreducible $\mathcal H$-representations to $W$-representations and we show that, when extended to the Grothendieck groups of finite dimensional representations, this map becomes an isomorphism, modulo torsion. The map can be adjusted to a (nonnatural) continuous bijection from the dual space of $\mathcal H$ to that of $W$. We use this to prove the affine Hecke algebra version of a conjecture of Aubert, Baum and Plymen, which predicts a strong and explicit geometric similarity between the dual spaces of $\mathcal H$ and $W$.
An important role is played by the Schwartz completion $\mathcal S = \mathcal S (\mathcal R,q)$ of $\mathcal H$, an algebra whose representations are precisely the tempered $\mathcal H$-representations. We construct isomorphisms $\zeta _\epsilon : \mathcal S (\mathcal R,q^\epsilon ) \to \mathcal S (\mathcal R,q) \; (\epsilon >0)$ and injection $\zeta _0 : \mathcal S (W) = \mathcal S (\mathcal R,q^0) \to \mathcal S (\mathcal R,q)$, depending continuously on $\epsilon$.
Although $\zeta _0$ is not surjective, it behaves like an algebra isomorphism in many ways. Not only does $\zeta _0$ extend to a bijection on Grothendieck groups of finite dimensional representations, it also induces isomorphisms on topological $K$-theory and on periodic cyclic homology (the first two modulo torsion). This proves a conjecture of Higson and Plymen, which says that the $K$-theory of the $C^*$-completion of an affine Hecke algebra $\mathcal H (\mathcal R,q)$ does not depend on the parameter(s) $q$.
References
- A.-M. Aubert, P.F. Baum, R.J. Plymen, “The Hecke algebra of a reductive $p$-adic group: a view from noncommutative geometry”, pp. 1–34 in: Noncommutative geometry and number theory, Aspects of Mathematics E37, Vieweg Verlag, 2006
- Anne-Marie Aubert, Paul Baum, and Roger Plymen, Geometric structure in the representation theory of $p$-adic groups, C. R. Math. Acad. Sci. Paris 345 (2007), no. 10, 573–578 (English, with English and French summaries). MR 2374467, DOI 10.1016/j.crma.2007.10.011
- Anne-Marie Aubert, Paul Baum, and Roger Plymen, Geometric structure in the principal series of the $p$-adic group $\textrm {G}_2$, Represent. Theory 15 (2011), 126–169. MR 2772586, DOI 10.1090/S1088-4165-2011-00392-7
- A.-M. Aubert, P.F. Baum, R.J. Plymen, “Geometric structure in the representation theory of $p$-adic groups II”, preprint, 2010
- Dubravka Ban and Chris Jantzen, The Langlands classification for non-connected $p$-adic groups, Israel J. Math. 126 (2001), 239–261. MR 1882038, DOI 10.1007/BF02784155
- Dubravka Ban and Chris Jantzen, The Langlands classification for non-connected $p$-adic groups. II. Multiplicity one, Proc. Amer. Math. Soc. 131 (2003), no. 10, 3297–3304. MR 1992872, DOI 10.1090/S0002-9939-03-07145-4
- D. Barbasch, D. Ciubotaru, “Unitary functorial correspondences for $p$-adic groups”, arxiv:0909.5241, 2010
- Dan Barbasch and Allen Moy, A unitarity criterion for $p$-adic groups, Invent. Math. 98 (1989), no. 1, 19–37. MR 1010153, DOI 10.1007/BF01388842
- Dan Barbasch and Allen Moy, Reduction to real infinitesimal character in affine Hecke algebras, J. Amer. Math. Soc. 6 (1993), no. 3, 611–635. MR 1186959, DOI 10.1090/S0894-0347-1993-1186959-0
- Paul Baum, Alain Connes, and Nigel Higson, Classifying space for proper actions and $K$-theory of group $C^\ast$-algebras, $C^\ast$-algebras: 1943–1993 (San Antonio, TX, 1993) Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240–291. MR 1292018, DOI 10.1090/conm/167/1292018
- P. F. Baum, N. Higson, and R. J. Plymen, Representation theory of $p$-adic groups: a view from operator algebras, The mathematical legacy of Harish-Chandra (Baltimore, MD, 1998) Proc. Sympos. Pure Math., vol. 68, Amer. Math. Soc., Providence, RI, 2000, pp. 111–149. MR 1767895, DOI 10.1090/pspum/068/1767895
- Paul Baum and Victor Nistor, Periodic cyclic homology of Iwahori-Hecke algebras, $K$-Theory 27 (2002), no. 4, 329–357. MR 1962907, DOI 10.1023/A:1022672218776
- J. N. Bernstein, Le “centre” de Bernstein, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 1–32 (French). Edited by P. Deligne. MR 771671
- J. Bernstein, K.E. Rumelhart, “Representations of $p$-adic groups”, draft, 1993
- Bruce Blackadar, $K$-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998. MR 1656031
- Corinne Blondel, Propagation de paires couvrantes dans les groupes symplectiques, Represent. Theory 10 (2006), 399–434 (French, with English summary). MR 2266698, DOI 10.1090/S1088-4165-06-00295-0
- Armand Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233–259. MR 444849, DOI 10.1007/BF01390139
- J.-B. Bost, Principe d’Oka, $K$-théorie et systèmes dynamiques non commutatifs, Invent. Math. 101 (1990), no. 2, 261–333 (French). MR 1062964, DOI 10.1007/BF01231504
- Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $\textrm {GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652, DOI 10.1515/9781400882496
- Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive $p$-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–634. MR 1643417, DOI 10.1112/S0024611598000574
- Colin J. Bushnell and Philip C. Kutzko, Semisimple types in $\textrm {GL}_n$, Compositio Math. 119 (1999), no. 1, 53–97. MR 1711578, DOI 10.1023/A:1001773929735
- W. Casselman, “Introduction to the theory of admissible representations of $p$-adic reductive groups”, draft, 1995
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Dan Ciubotaru, On unitary unipotent representations of $p$-adic groups and affine Hecke algebras with unequal parameters, Represent. Theory 12 (2008), 453–498. MR 2465803, DOI 10.1090/S1088-4165-08-00338-5
- Dan Ciubotaru and Syu Kato, Tempered modules in exotic Deligne-Langlands correspondence, Adv. Math. 226 (2011), no. 2, 1538–1590. MR 2737793, DOI 10.1016/j.aim.2010.08.013
- Dan Ciubotaru and Peter E. Trapa, Functors for unitary representations of classical real groups and affine Hecke algebras, Adv. Math. 227 (2011), no. 4, 1585–1611. MR 2799806, DOI 10.1016/j.aim.2011.03.018
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Reprint of the 1962 original; A Wiley-Interscience Publication. MR 1013113
- Patrick Delorme and Eric M. Opdam, The Schwartz algebra of an affine Hecke algebra, J. Reine Angew. Math. 625 (2008), 59–114. MR 2482216, DOI 10.1515/CRELLE.2008.090
- P. Delorme, E.M. Opdam, “Analytic R-groups of affine Hecke algebras”, arXiv:0909.1227, to appear in J. Reine Angew. Math.
- Sam Evens, The Langlands classification for graded Hecke algebras, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1285–1290. MR 1322921, DOI 10.1090/S0002-9939-96-03295-9
- David Goldberg and Alan Roche, Hecke algebras and $\textrm {SL}_n$-types, Proc. London Math. Soc. (3) 90 (2005), no. 1, 87–131. MR 2107039, DOI 10.1112/S0024611504014881
- G. J. Heckman and E. M. Opdam, Yang’s system of particles and Hecke algebras, Ann. of Math. (2) 145 (1997), no. 1, 139–173. MR 1432038, DOI 10.2307/2951825
- V. Heiermann, “Opérateurs d’entrelacement et algèbres de Hecke avec paramètres d’un groupe réductif $p$-adique - le cas des groupes classiques”, Selecta Math. 17 (2011), DOI: 10.1007/s00029-011-0056-0
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of ${\mathfrak {p}}$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48. MR 185016, DOI 10.1007/BF02684396
- Shin-ichi Kato, Irreducibility of principal series representations for Hecke algebras of affine type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 929–943 (1982). MR 656065
- Syu Kato, An exotic Deligne-Langlands correspondence for symplectic groups, Duke Math. J. 148 (2009), no. 2, 305–371. MR 2524498, DOI 10.1215/00127094-2009-028
- David Kazhdan and George Lusztig, Equivariant $K$-theory and representations of Hecke algebras. II, Invent. Math. 80 (1985), no. 2, 209–231. MR 788408, DOI 10.1007/BF01388604
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- Ju-Lee Kim, Hecke algebras of classical groups over $p$-adic fields and supercuspidal representations, Amer. J. Math. 121 (1999), no. 5, 967–1029. MR 1713299, DOI 10.1353/ajm.1999.0033
- Ju-Lee Kim, Hecke algebras of classical groups over $p$-adic fields. II, Compositio Math. 127 (2001), no. 2, 117–167. MR 1845898, DOI 10.1023/A:1012023315726
- Takuya Konno, A note on the Langlands classification and irreducibility of induced representations of $p$-adic groups, Kyushu J. Math. 57 (2003), no. 2, 383–409. MR 2050093, DOI 10.2206/kyushujm.57.383
- Cathy Kriloff and Arun Ram, Representations of graded Hecke algebras, Represent. Theory 6 (2002), 31–69. MR 1915086, DOI 10.1090/S1088-4165-02-00160-7
- Vincent Lafforgue, $K$-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Invent. Math. 149 (2002), no. 1, 1–95 (French). MR 1914617, DOI 10.1007/s002220200213
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR 1011897, DOI 10.1090/surv/031/03
- George Lusztig, Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. MR 518617, DOI 10.1090/cbms/039
- George Lusztig, Equivariant $K$-theory and representations of Hecke algebras, Proc. Amer. Math. Soc. 94 (1985), no. 2, 337–342. MR 784189, DOI 10.1090/S0002-9939-1985-0784189-2
- George Lusztig, Cells in affine Weyl groups. II, J. Algebra 109 (1987), no. 2, 536–548. MR 902967, DOI 10.1016/0021-8693(87)90154-2
- George Lusztig, Cells in affine Weyl groups. III, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 2, 223–243. MR 914020
- George Lusztig, Representations of affine Hecke algebras, Astérisque 171-172 (1989), 73–84. Orbites unipotentes et représentations, II. MR 1021500
- George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635. MR 991016, DOI 10.1090/S0894-0347-1989-0991016-9
- George Lusztig, Classification of unipotent representations of simple $p$-adic groups, Internat. Math. Res. Notices 11 (1995), 517–589. MR 1369407, DOI 10.1155/S1073792895000353
- G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442, DOI 10.1090/crmm/018
- G. Lusztig, “From conjugacy classes in the Weyl group to unipotent classes”, arXiv:1003.0412, 2010
- Lawrence Morris, Tamely ramified intertwining algebras, Invent. Math. 114 (1993), no. 1, 1–54. MR 1235019, DOI 10.1007/BF01232662
- Allen Moy, Representations of $G\,\textrm {Sp}(4)$ over a $p$-adic field. I, II, Compositio Math. 66 (1988), no. 3, 237–284, 285–328. MR 948308
- Allen Moy, Representations of $\textrm {U}(2,1)$ over a $p$-adic field, J. Reine Angew. Math. 372 (1986), 178–208. MR 863523, DOI 10.1515/crll.1986.372.178
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680, DOI 10.1007/BF02566411
- Victor Nistor, A non-commutative geometry approach to the representation theory of reductive $p$-adic groups: homology of Hecke algebras, a survey and some new results, Noncommutative geometry and number theory, Aspects Math., E37, Friedr. Vieweg, Wiesbaden, 2006, pp. 301–321. MR 2327310, DOI 10.1007/978-3-8348-0352-8_{1}4
- Eric M. Opdam, A generating function for the trace of the Iwahori-Hecke algebra, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000) Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. 301–323. MR 1985730
- Eric M. Opdam, On the spectral decomposition of affine Hecke algebras, J. Inst. Math. Jussieu 3 (2004), no. 4, 531–648. MR 2094450, DOI 10.1017/S1474748004000155
- Eric M. Opdam, Hecke algebras and harmonic analysis, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1227–1259. MR 2275643
- Eric Opdam, The central support of the Plancherel measure of an affine Hecke algebra, Mosc. Math. J. 7 (2007), no. 4, 723–741, 767–768 (English, with English and Russian summaries). MR 2372211, DOI 10.17323/1609-4514-2007-7-4-723-741
- Eric Opdam and Maarten Solleveld, Homological algebra for affine Hecke algebras, Adv. Math. 220 (2009), no. 5, 1549–1601. MR 2493620, DOI 10.1016/j.aim.2008.11.002
- Eric Opdam and Maarten Solleveld, Discrete series characters for affine Hecke algebras and their formal degrees, Acta Math. 205 (2010), no. 1, 105–187. MR 2736154, DOI 10.1007/s11511-010-0052-9
- N. Christopher Phillips, $K$-theory for Fréchet algebras, Internat. J. Math. 2 (1991), no. 1, 77–129. MR 1082838, DOI 10.1142/S0129167X91000077
- R.J. Plymen, “Noncommutative geometry: illustrations from the representation theory of GL(n)”, lecture notes, 1993, http://eprints.ma.man.ac.uk/1346
- R. J. Plymen, Reduced $C^*$-algebra for reductive $p$-adic groups, J. Funct. Anal. 88 (1990), no. 2, 251–266. MR 1038441, DOI 10.1016/0022-1236(90)90105-T
- Arun Ram and Jacqui Ramagge, Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory, A tribute to C. S. Seshadri (Chennai, 2002) Trends Math., Birkhäuser, Basel, 2003, pp. 428–466. MR 2017596
- Mark Reeder, Nonstandard intertwining operators and the structure of unramified principal series representations, Forum Math. 9 (1997), no. 4, 457–516. MR 1457135, DOI 10.1515/form.1997.9.457
- Mark Reeder, Isogenies of Hecke algebras and a Langlands correspondence for ramified principal series representations, Represent. Theory 6 (2002), 101–126. MR 1915088, DOI 10.1090/S1088-4165-02-00167-X
- Alan Roche, Types and Hecke algebras for principal series representations of split reductive $p$-adic groups, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 3, 361–413 (English, with English and French summaries). MR 1621409, DOI 10.1016/S0012-9593(98)80139-0
- Alan Roche, The Bernstein decomposition and the Bernstein centre, Ottawa lectures on admissible representations of reductive $p$-adic groups, Fields Inst. Monogr., vol. 26, Amer. Math. Soc., Providence, RI, 2009, pp. 3–52. MR 2508719, DOI 10.1090/fim/026/01
- J. D. Rogawski, On modules over the Hecke algebra of a $p$-adic group, Invent. Math. 79 (1985), no. 3, 443–465. MR 782228, DOI 10.1007/BF01388516
- Jonathan Rosenberg, Appendix to: “Crossed products of UHF algebras by product type actions” [Duke Math. J. 46 (1979), no. 1, 1–23; MR 82a:46063 above] by O. Bratteli, Duke Math. J. 46 (1979), no. 1, 25–26. MR 523599
- K. Slooten, A combinatorial generalization of the Springer correspondence for classical type, PhD Thesis, Universiteit van Amsterdam, 2003
- K. Slooten, Generalized Springer correspondence and Green functions for type $B/C$ graded Hecke algebras, Adv. Math. 203 (2006), no. 1, 34–108. MR 2231067, DOI 10.1016/j.aim.2005.04.003
- Maarten Solleveld, Some Fréchet algebras for which the Chern character is an isomorphism, $K$-Theory 36 (2005), no. 3-4, 275–290 (2006). MR 2275008, DOI 10.1007/s10977-006-7106-y
- M. Solleveld, “Periodic cyclic homology of Hecke algebras and their Schwartz completions”, arXiv:math.KT/0605042, 2006
- M. Solleveld, Periodic cyclic homology of affine Hecke algebras, PhD Thesis, Universiteit van Amsterdam, 2007, arXiv:0910.1606
- Maarten Solleveld, Periodic cyclic homology of reductive $p$-adic groups, J. Noncommut. Geom. 3 (2009), no. 4, 501–558. MR 2539769, DOI 10.4171/JNCG/45
- M. Solleveld, “Parabolically induced representations of graded Hecke algebras”, Algebras and Representation Theory (2010), DOI: 10.1007/s10468-010-9240-8
- Maarten Solleveld, Homology of graded Hecke algebras, J. Algebra 323 (2010), no. 6, 1622–1648. MR 2588128, DOI 10.1016/j.jalgebra.2010.01.011
- T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279–293. MR 491988, DOI 10.1007/BF01403165
- J.-L. Waldspurger, La formule de Plancherel pour les groupes $p$-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu 2 (2003), no. 2, 235–333 (French, with French summary). MR 1989693, DOI 10.1017/S1474748003000082
- Nan Hua Xi, Representations of affine Hecke algebras, Lecture Notes in Mathematics, vol. 1587, Springer-Verlag, Berlin, 1994. MR 1320509, DOI 10.1007/BFb0074130
Bibliographic Information
- Maarten Solleveld
- Affiliation: Mathematisches Institut, Georg-August-Universität Göttingen, Bunsenstraße 3-5, 37073 Göttingen, Germany
- Email: Maarten.Solleveld@mathematik.uni-goettingen.de
- Received by editor(s): September 27, 2010
- Received by editor(s) in revised form: May 31, 2011
- Published electronically: January 11, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 16 (2012), 1-87
- MSC (2010): Primary 20C08; Secondary 20G25
- DOI: https://doi.org/10.1090/S1088-4165-2012-00406-X
- MathSciNet review: 2869018